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Abstract

Temporal-Difference (TD) learning stands as a central idea in reinforcement learning,
combining the strengths of Monte Carlo (MC) methods and Dynamic Programming
(DP). This document provides a comprehensive explanation of TD learning, drawing
parallels and contrasts with MC and DP, and explains foundational concepts such as
sampling, bootstrapping, TD prediction, and TD control. The aim is to provide an
intuitive and mathematical understanding of how TD learning operates and why it
plays a pivotal role in learning optimal policies.
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1 Introduction

Temporal-Difference (TD) learning is a fundamental concept in reinforcement learning (RL),
known for its hybrid nature that draws inspiration from both Monte Carlo (MC) methods
and Dynamic Programming (DP). While MC learns entirely from experience and DP relies
entirely on a model of the environment, TD combines the best of both worlds: learning from
sampled experiences without a model (like MC) and bootstrapping from existing estimates
(like DP).

To truly appreciate the significance of TD learning, it is essential to first recall the defining
characteristics of Monte Carlo and Dynamic Programming approaches to the prediction
problem in RL.

1.1 Dynamic Programming (DP)

Dynamic Programming requires a complete model of the environment, including the tran-
sition probabilities P (s′|s, a) and reward function R(s, a, s′). DP algorithms use these to
compute expected values over all possible next states and actions.

Key properties of DP:

• Requires full knowledge of the environment.

• Performs full backups using expectations over all next states.

• Updates are performed after every step, but using the model.

The Bellman Expectation Equation used in DP for policy evaluation is:

vπ(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a) [R(s, a, s′) + γvπ(s
′)]

1.2 Monte Carlo (MC) Methods

Monte Carlo methods, in contrast, learn value functions based purely on experience. They
sample complete episodes from the environment and use the actual return from each
episode to update value estimates.

Key properties of MC:

• Does not require a model of the environment.

• Uses sample returns to update values.

• Must wait until the end of the episode to perform updates.

Monte Carlo prediction updates value estimates using the return Gt from a state:

V (st)← V (st) + α [Gt − V (st)]
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1.3 Why Temporal-Difference Learning?

Temporal-Difference (TD) learning was introduced to bridge the gap between the two classic
approaches to reinforcement learning: Monte Carlo (MC) and Dynamic Programming (DP).
TD methods inherit strengths from both paradigms:

• Sampling like Monte Carlo: TDmethods learn directly from actual interaction with
the environment. They do not require knowledge of the transition dynamics P (s′|s, a).
Instead, they rely on sampled episodes, just like Monte Carlo methods. This allows
learning to happen in unknown or complex environments through raw experience.

• Bootstrapping like Dynamic Programming: Unlike Monte Carlo methods, TD
methods do not need to wait for the end of an episode. They update estimates using
a one-step lookahead — incorporating the immediate reward and the estimated
value of the next state. This approach, known as bootstrapping, enables fast and
incremental updates.

Sampling: This refers to the process of learning from observed state transitions of the
form:

(st, at, rt+1, st+1)

Instead of using expected values over all possible future outcomes (as in DP), TD methods
use these actual samples to drive learning.

Bootstrapping: The term bootstrapping means to lift or improve oneself using one’s own
resources. In TD learning, it refers to improving an estimate based on other current esti-
mates, rather than waiting for the final true outcome. Specifically, TD learning updates the
value of the current state using the estimated value of the next state.

This concept will be explored in depth in the next section, where we introduce the idea of
the TD error — a central signal that quantifies the difference between the current estimate
and the bootstrapped target.
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2 The General Learning Rule in TD Methods

2.1 A Fundamental Principle of Learning

At the heart of many learning algorithms — including Temporal-Difference (TD) methods
— lies a simple but powerful idea:

New Estimate ← Old Estimate + α · (Target−Old Estimate)

This is a general incremental learning rule, where:

• α ∈ (0, 1] is the learning rate,

• The Target is a better estimate of what the value should be,

• The difference Target−Old Estimate is the error signal.

Key Intuition: You already have a belief about something (e.g., how good a state is), and
you just received new information that helps refine it. You don’t completely replace the old
value — instead, you nudge it a little bit toward the new insight.

This idea is used in many areas of machine learning and control theory.

2.2 Application to TD Learning

In Temporal-Difference learning, the quantity being estimated is the value of a state (or a
state-action pair).

The general TD learning rule becomes:

V (st)← V (st) + α (Target− V (st))

Now, the central question becomes: What is the target?

This leads us to the concept of the TD target, and the difference between the target and
current value is what we define as the TD error.

We explore this in detail in the next section.
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3 Understanding the Temporal-Difference (TD) Error

3.1 What Are We Trying to Estimate?

In reinforcement learning, the core goal of prediction is to estimate the expected return from
a state under a given policy π. This expected return is formally defined as the value function:

vπ(st) = Eπ [Gt | st] = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + · · · | st

]
By the recursive structure of the Bellman expectation equation, this is also equivalent to:

vπ(st) = Eπ [rt+1 + γvπ(st+1) | st]

However, in practice, we do not know vπ and must instead build an estimate, denoted V (s),
based on experience.

3.2 TD Target: Bootstrapped Estimate of Return

Instead of waiting for the full return Gt at the end of an episode, TD methods construct a
one-step estimate of that return:

TD Target = rt+1 + γV (st+1)

This target uses:

• rt+1: the immediate reward observed after taking action at,

• V (st+1): the current estimate of the value of the next state.

This is a bootstrapped estimate because it uses the current estimate V (st+1) rather than
the actual return from that state.

3.3 What is the TD Error?

The Temporal-Difference (TD) error is the difference between the TD target (our new,
better guess) and our current estimate V (st). It is defined as:

δt = rt+1 + γV (st+1)− V (st)

This measures how surprised we are by the new experience — if the TD error is large, it
means the previous estimate V (st) was significantly off and needs to be adjusted.
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3.4 Analogy: Restaurant Rating with Learning Rule

Imagine you are trying to predict how much your friend will like a new restaurant.

Initially, you guess they’ll rate it a 6/10. After trying the starter, your friend texts you: “So
far it’s great — if things stay like this, I’d say 8/10!”

Rather than replacing your original guess (6) with this new estimate (8), you apply a slight
adjustment using the learning rule:

New Estimate = Old Estimate + α · (Target−Old Estimate)

In this case:

• Old Estimate = 6,

• Target = 8 (friend’s partial feedback),

• Learning rate α = 0.5 (say).

Then:
New Estimate = 6 + 0.5 · (8− 6) = 6 + 1 = 7

So you revise your prediction to 7/10 — a balance between your prior belief and the new
evidence.

This is exactly what Temporal-Difference learning does:

• It uses recent feedback (reward),

• And the current estimate of what’s next (value of the next state),

• To incrementally improve the value of earlier states — without waiting for the final
outcome.
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Analogy Concept TD Concept

Initial guess of the restaurant V (st): Estimate of how good the current
state is before receiving new feedback

Friend tastes starter Agent takes an action and observes an im-
mediate reward

Friend says “so far, 8/10” TD target: rt+1 + γV (st+1), an improved es-
timate based on reward + next state

You revise your original guess Value update: V (st)← V (st) + α · δt
You didn’t wait for final score TD updates occur before the full episode

ends — using bootstrapped estimates

Table 1: Mapping the restaurant rating analogy to TD learning concepts

4 TD Prediction: The TD(0) Algorithm

4.1 Problem Setup

In the prediction problem, the goal is to estimate the value function vπ(s) — the expected
return when starting from state s and following a given policy π.

Formally:
vπ(s) = Eπ [Gt | st = s]

Unlike Monte Carlo methods, which wait for an entire episode to end to calculate Gt, TD(0)
uses only the first reward and the estimated value of the next state to incrementally update
the value of st.

4.2 TD(0) Update Rule

The TD(0) method performs the following update after each step:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

Where:

• V (st) is the current estimate of the value of state st,

• rt+1 is the reward received after taking action at,

• V (st+1) is the estimated value of the next state,

• α is the learning rate,

• γ is the discount factor.

This update is applied after every transition, making the algorithm online and incremental.
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4.3 Pseudocode: Tabular TD(0)

Algorithm: TD(0) for Policy Evaluation
Input: Policy π, discount factor γ ∈ [0, 1], step size α ∈ (0, 1]
Initialize V (s) arbitrarily for all s ∈ S
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Take action a ∼ π(·|s); observe reward r, next state s′

Update:
V (s)← V (s) + α[r + γV (s′)− V (s)]

s← s′

until s is terminal

4.4 Remarks

• TD(0) uses only the most recent experience and the value estimate of the next state
to update the current state.

• This enables **faster learning** compared to MC in many environments, especially
continuing tasks.

• It does not require a model of the environment.

• TD(0) can be used in both episodic and continuing environments.

4.5 Extensions of TD(0): Multi-Step TD and TD(λ)

Motivation: While TD(0) updates value estimates based only on a single step into the
future, it is often beneficial to use more future rewards when forming the target. This
leads to multi-step TD methods, including TD(n) and TD(λ), which generalize the update
mechanism of TD(0).

TD(n): Multi-Step Temporal Difference Learning

TD(n) methods look ahead n steps before bootstrapping:

G
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n)

The value update is then:

V (st)← V (st) + α
[
G

(n)
t − V (st)

]
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Trade-Off:

• Small n → More bootstrapping, faster updates, but less future reward info.

• Large n → Closer to Monte Carlo, more accurate long-term return, but slower conver-
gence and higher variance.

TD(λ): Eligibility Traces and Mixed Returns

TD(λ) combines all n-step returns using an exponentially decaying weighting factor λ ∈ [0, 1]:

G
(λ)
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t

Rather than storing full episodes to compute these returns, TD(λ) is implemented efficiently
using eligibility traces, which track how recently and frequently each state has been visited.

Update Rule with Eligibility Trace:

V (s)← V (s) + α · δt · et(s)

Where:

• δt = rt+1 + γV (st+1)− V (st) is the TD error,

• et(s) is the eligibility trace for state s,

• et(s) decays over time and increases when state s is visited.

Special Cases:

• TD(0) is a special case of TD(λ) with λ = 0.

• Monte Carlo prediction corresponds to TD(λ) with λ = 1.

Why TD(λ) Matters:

• TD(λ) allows a smooth trade-off between bias and variance.

• It’s widely used in both tabular and function approximation settings.

• It forms the foundation of more advanced algorithms (e.g., TD(λ) with function ap-
proximation, actor-critic methods).
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5 TD Control Methods

5.1 SARSA: On-Policy TD Control

SARSA (State–Action–Reward–State–Action) is an on-policy Temporal-Difference (TD)
control algorithm. It estimates the action-value function Q(s, a) under the same policy
that the agent uses to act — usually an ϵ-greedy policy that occasionally explores. Unlike
off-policy methods, SARSA learns from the actual actions taken, including those resulting
from exploration.

Objective

SARSA aims to learn the expected return starting from state s, taking action a, and there-
after following the current policy π. That is:

Q(s, a) ≈ E[Gt | st = s, at = a]

Update Rule

SARSA updates its Q-values after observing the following transition:

(st, at, rt+1, st+1, at+1)

The update rule is:

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

where:

• α is the learning rate,

• γ is the discount factor,

• at+1 is chosen using the same behavior policy (e.g., ϵ-greedy).

Pseudocode (Tabular SARSA)

SARSA Algorithm
Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s)
For each episode:
Initialize state s
Choose action a ∼ ϵ-greedy(Q(s, ·))
Repeat (for each step of episode):
Take action a, observe reward r and next state s′

Choose next action a′ ∼ ϵ-greedy(Q(s′, ·))
Update: Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
Set s← s′, a← a′

Until s is terminal

11



What Does “On-Policy” Mean in SARSA?

The term on-policy means that the agent uses the same policy:

• To select actions while interacting with the environment,

• And to update the value function based on those actions.

In SARSA, the agent follows a behavior policy such as ϵ-greedy and updates its Q-values
using the actual next action it took. This includes both greedy and exploratory actions.

How Does ϵ-greedy Work? At any state s, the agent:

• Picks a random action with probability ϵ (exploration),

• Picks the action with the highest Q-value with probability 1− ϵ (exploitation).

Concrete Example: Suppose the agent is in state st+1, and its Q-values are:

Q(st+1, a1) = 5

Q(st+1, a2) = 2

Q(st+1, a3) = 4

Q(st+1, a4) = 3

If ϵ = 0.1:

• 90% chance: pick a1 (greedy)

• 10% chance: pick randomly from all 4 actions.

Now suppose the agent randomly chooses a3. SARSA will update using:

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, a3)−Q(st, at)]

Even though a1 was the best action, SARSA reflects what actually happened. This makes
SARSA more realistic and safer in environments where risky exploration must be acknowl-
edged.
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Key Characteristics

• On-policy: Learns the value of the policy actually followed (including exploratory
moves).

• Risk-aware: If the policy includes randomness, SARSA incorporates that into learn-
ing.

• Slower convergence in some cases than Q-learning, but often leads to safer behavior.

5.2 Q-Learning: Off-Policy TD Control

Q-learning is an off-policy Temporal-Difference (TD) control algorithm. It aims to
learn the optimal action-value function Q∗(s, a), regardless of the policy actually used to
explore the environment.

Unlike SARSA, Q-learning updates the Q-value of the current state-action pair by assuming
that the agent will act optimally from the next state onward — even if it doesn’t. This makes
Q-learning an off-policy method, because the update assumes a greedy policy while the
agent might be following an exploratory one.

Objective

Q-learning seeks to estimate the optimal value function:

Q∗(s, a) = E
[
rt+1 + γmax

a′
Q∗(st+1, a

′) | st = s, at = a
]

This is done by interacting with the environment and updating the Q-values using the
maximum value of the next state, regardless of the next action actually taken.

Update Rule

After observing a transition (st, at, rt+1, st+1), the Q-learning update rule is:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

Where:

• α is the learning rate,

• γ is the discount factor,

• maxa′ Q(st+1, a
′) is the greedy estimate of the next state’s value.
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Pseudocode (Tabular Q-Learning)

Q-Learning Algorithm
Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s)
For each episode:
Initialize state s
Repeat (for each step of episode):
Choose action a ∼ ϵ-greedy(Q(s, ·))
Take action a, observe reward r, next state s′

Update: Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
Set s← s′

Until s is terminal

Why is Q-Learning Off-Policy?

Although the agent often behaves using an ϵ-greedy policy, the update is performed assum-
ing it will act greedily from the next state onward.

This means:

• The agent may explore in st+1, but the update still assumes it chooses the best action.

• The learning is disconnected from the actual trajectory taken — hence, off-policy.

Example:

Suppose the agent reaches state st+1, with Q-values:

Q(st+1, a1) = 5

Q(st+1, a2) = 2

Q(st+1, a3) = 4

Q(st+1, a4) = 3

Even if the agent (exploring with ϵ = 0.1) takes action a3, the update uses the maximum
Q-value among all actions, i.e., Q(st+1, a1) = 5.

So the update will be:

Q(st, at)← Q(st, at) + α [rt+1 + γ · 5−Q(st, at)]

Q-learning is thus more optimistic — it always assumes the best possible future behavior.
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Key Characteristics

• Off-policy: Updates are based on the greedy policy, not the behavior policy.

• Optimistic: Learns the value of the best possible actions — even if not followed.

• Faster convergence to the optimal policy in many cases — but can be riskier due to
ignoring exploration behavior in learning.

5.3 Comparison: SARSA vs. Q-Learning

Both SARSA and Q-Learning are Temporal-Difference (TD) control algorithms that use
experience to update action-value functions. They often share the same behavior policy
(e.g., ϵ-greedy), but differ in how they use the outcomes of that policy to perform updates.

Behavior Policy: ϵ-greedy (Same in Both)

In both algorithms, the agent usually selects actions using an ϵ-greedy policy:

• With probability ϵ, a random action is chosen (exploration).

• With probability 1− ϵ, the action with the highest Q-value is chosen (exploitation).

So yes — both behave greedily most of the time. But the **update step** is where the key
difference lies.

SARSA (On-policy)

• Uses the actual action taken in the next state at+1, even if it’s exploratory.

• Update Rule:

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

• at+1 is sampled using the same current policy (e.g., ϵ-greedy).

• This includes randomness in learning and reflects what the current policy actually
does.

Q-Learning (Off-policy)

• Assumes the agent acts optimally in the next state.

• Update Rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
• Always uses the greedy action for updating, regardless of the actual action taken.

• Learns the value of the optimal policy, not necessarily the one being followed.
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Comparison Table

Aspect SARSA (On-Policy) Q-Learning (Off-Policy)

Policy Type On-policy (updates using ac-
tual action taken)

Off-policy (updates assuming
optimal action)

Update Target r + γQ(st+1, at+1) r + γmaxa Q(st+1, a)

Behavior Policy ϵ-greedy ϵ-greedy

Update Based On Action taken (including explo-
ration)

Best possible action (greedy)

Learns Value of Behavior policy (possibly sub-
optimal)

Optimal policy

Learning Style Safe, cautious Aggressive, optimistic

Convergence To Behavior policy’s performance Optimal policy performance

Table 2: Comparison of SARSA and Q-Learning

Pseudocode Snapshot

SARSA:

# Step 1: choose action a_t using epsilon-greedy

# Step 2: take a_t, observe r, s_{t+1}

# Step 3: choose next action a_{t+1} using epsilon-greedy

# Step 4: Q-update:

Q[s_t][a_t] += alpha * (r + gamma * Q[s_{t+1}][a_{t+1}] - Q[s_t][a_t])

Q-Learning:

# Step 1: choose action a_t using epsilon-greedy

# Step 2: take a_t, observe r, s_{t+1}

# Step 3: Q-update:

Q[s_t][a_t] += alpha * (r + gamma * max(Q[s_{t+1}]) - Q[s_t][a_t])

Analogy: Learning to Drive

• SARSA: Like learning to drive by evaluating what actually happened on the road —
including wrong turns and missed exits.

• Q-Learning: Like learning to drive by imagining you always took the best path, even
when you didn’t.
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When to Use Which?

• Use SARSA if safe learning is critical, especially in environments where exploration
can be risky.

• Use Q-Learning when long-term performance is the goal and exploration risks are
acceptable.
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