
Reinforcement Learning
Lecture 6: Temporal-Difference Reinforcement Learning

Niranjan Deshpande
Minor in AI, IIT Ropar

April 22, 2025

1 / 23



Today’s Agenda

1. Why TD Learning

2. Temporal Difference Learning

3. TD Algorithms

2 / 23



Why Temporal-Difference Learning?

• Monte Carlo (MC): Learns from complete episodes — must wait until the end.

• Dynamic Programming (DP): Requires a model of the environment — impractical
for many real problems.

• TD Learning:
• Learns directly from raw experience — like MC.

• Does not need a model — like MC.

• Updates after each step — like DP.

TD Learning = Sample-based like MC + Bootstrapped like DP

3 / 23



MC: Full Episode

Wait → Wait → Wait → Update

DP: Uses Model

Model → Evaluate → Update

TD: Online Update

Step → Observe → Update

4 / 23



MC vs DP vs TD: Key Comparison

Aspect MC DP TD

Model required? No Yes No

Learns from samples? Yes No (uses full
model)

Yes

Bootstraps? No Yes Yes

Updates after every
step?

No (waits for
episode end)

Yes Yes

Converges with in-
complete episodes?

No Yes Yes

Policy evaluation? Yes Yes Yes

Suitable for online
learning?

No No Yes

Table: *

TD blends sample-based learning from MC and bootstrapping from DP

5 / 23



The General TD Learning Rule

Core idea: Temporal-Difference methods update estimates using other learned estimates.

Generic TD update rule:

New Estimate = Old Estimate + α ·
(
Target− Old Estimate

)
• α: learning rate (how much we trust the new info).

• Target: a short-term approximation of long-term return.

• Works for both value functions and Q-functions.

“Update using what you just experienced and what you currently believe.”

6 / 23



Understanding TD Error

TD Error measures how “surprised” the agent is by what it just observed:

δt = rt+1 + γV (st+1)︸ ︷︷ ︸
Better estimate (TD Target)

− V (st)︸ ︷︷ ︸
Current estimate

Why is this useful?

If TD Error = 0, then our current guess is already good.
If TD Error ̸= 0, we use it to improve our estimate.

New Estimate = Old Estimate + α · (Target− Old Estimate)

7 / 23



TD Algorithms Overview

Temporal-Difference methods can be divided into two broad categories:

• TD Prediction: Estimate the value function V π(s) for a given policy π.

• TD(0)

• TD(λ)

• TD Control: Learn the optimal policy π∗ by improving the action-value function
Q(s, a).

• SARSA (On-policy)

• Q-Learning (Off-policy)

• Expected SARSA

• Double Q-Learning

8 / 23



All TD methods:

• Learn from experience

• Do not require a model of the environment

• Use bootstrapping — they update based on current estimates

9 / 23



TD Prediction
TD(0) – One-Step Learning

Goal: Estimate the value function V π(s) for a given policy π using experience.

TD(0) is the simplest TD prediction method:
• Updates value estimates after every single step.

• Uses the immediate reward and the value of the next state.

• Does not wait until the end of an episode.

Update Rule:
V (st)← V (st) + α · [rt+1 + γV (st+1)− V (st)]

where:
• rt+1 + γV (st+1): TD target (bootstrapped estimate)
• V (st): current estimate
• δt : TD error = target - estimate

10 / 23



TD Prediction
TD(0) – Algorithm

11 / 23



TD Prediction
Beyond TD(0) - Other Algorithms

TD(0) uses a one-step lookahead to update value estimates. But there are more general
methods that strike a balance between TD and Monte Carlo.

1. TD(λ) – Eligibility Traces

• Combines ideas from TD(0) and Monte Carlo.

• Uses multiple-step returns (1-step, 2-step, ..., full return).

• Controlled by λ ∈ [0, 1]:

• λ = 0: becomes TD(0)

• λ = 1: approximates Monte Carlo

12 / 23



2. Expected Updates (e.g., Expected SARSA)

• Use expected value of the next state under a stochastic policy.

• Reduce variance by averaging over all actions.

These generalizations:

• Improve learning stability

• Create smoother trade-offs between bias and variance

13 / 23



TD Control
SARSA – On-Policy Learning

SARSA stands for:

State (st)→ Action (at)→ Reward (rt+1)→ Next State (st+1)→ Next Action (at+1)

• It is an on-policy TD control method.

• Learns the action-value function Q(s, a) while following the same policy used for
acting.

• Usually uses an ϵ-greedy exploration strategy.

Key Idea: SARSA updates Q-values based on the action the agent actually took —
including random actions due to exploration.

Goal: Learn Qπ(s, a), the expected return of the current behavior policy.

14 / 23



SARSA – Update Rule and Learning Process

SARSA Update Rule:

Q(st , at)← Q(st , at) + α · [rt+1 + γQ(st+1, at+1)− Q(st , at)]

Learning loop:

• Choose action at from st using ϵ-greedy.

• Take at , observe rt+1, st+1.

• Choose at+1 from st+1 using same policy.

• Update Q(st , at) using the rule above.

• Repeat.

Why On-Policy? The update uses the actual action at+1 taken by the current policy —
even if it was random.

15 / 23



SARSA - Algorithm

16 / 23



TD Control
Q-Learning – Off-Policy Learning

Q-Learning is an off-policy TD control algorithm.

Goal: Learn the optimal action-value function Q∗(s, a), regardless of how the agent
behaves during learning.

Key Idea: Even if the agent explores (e.g., using ϵ-greedy), it always updates its
Q-values as if it acted optimally.

• Ignores what action the agent actually took in the next state.

• Instead, it assumes the best possible action was taken.

• This makes it more optimistic — converges to the optimal policy.

Used widely in RL: Simple, powerful, and converges under mild conditions.

17 / 23



Q-Learning – Update Rule and Learning Process

Q-Learning Update Rule:

Q(st , at)← Q(st , at) + α ·
[
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

]
Learning loop:
• Choose action at from st using ϵ-greedy.

• Take at , observe rt+1, st+1.

• Compute the best next action: maxa Q(st+1, a).

• Update Q(st , at) using the rule above.

• Repeat.

Why Off-Policy? It updates using the greedy action, not the action actually taken
during exploration.

18 / 23



Q-Learning - Algorithm

19 / 23



SARSA vs Q-Learning
On-Policy vs Off-Policy

Aspect SARSA (On-Policy) Q-Learning (Off-Policy)

Policy Type Learns value of current be-
havior policy

Learns value of optimal
greedy policy

Next Action Used at+1 ∼ π (actual action
taken)

maxa Q(st+1, a) (greedy)

Update Rule Q(st , at) ← Q(st , at) +
α[r + γQ(st+1, at+1) −
Q(st , at)]

Q(st , at) ← Q(st , at) +
α[r + γmaxa Q(st+1, a) −
Q(st , at)]

Exploration-aware Yes No

Risk Behavior Safer, cautious learning More aggressive, optimistic

20 / 23



ϵ-Greedy Action Selection

• With probability ϵ: choose a random action (exploration)

• With probability 1− ϵ: choose the action with the highest Q-value
(exploitation)

Pseudocode:

def epsilon_greedy(Q, state, epsilon):

if random() < epsilon:

return random_action()

else:

return argmax_a Q[state][a]

Used in: Both SARSA and Q-Learning during action selection

21 / 23



Code Comparison: SARSA vs Q-Learning

SARSA: On-Policy

a_t = epsilon_greedy(Q, s_t)

s_t1, r = env.step(a_t)

a_t1 = epsilon_greedy(Q, s_t1)

Q[s_t][a_t] += alpha * (

r + gamma * Q[s_t1][a_t1]

- Q[s_t][a_t]

)

Q-Learning: Off-Policy

a_t = epsilon_greedy(Q, s_t)

s_t1, r = env.step(a_t)

Q[s_t][a_t] += alpha * (

r + gamma * max(Q[s_t1])

- Q[s_t][a_t]

)

Note: In SARSA, the next action is sampled and used in the update. In Q-learning, we
assume the next action is always the best one.

Common ϵ-greedy Policy (used in both):

22 / 23



Summary: Temporal-Difference Learning

• TD Learning combines the strengths of:

• Monte Carlo: Learns from raw experience (no model)

• Dynamic Programming: Bootstraps estimates

• TD(0): One-step prediction algorithm V (st)← V (st) +α
[
rt+1 + γV (st+1)−V (st)

]
• SARSA (On-Policy): Learns from the action actually taken, even if it’s random.

• Q-Learning (Off-Policy): Learns assuming the best possible action is always taken.

• ϵ-greedy: Balances exploration and exploitation in both methods.

TD = Learn while you go. Improve while you explore.

23 / 23


	Why TD Learning
	Temporal Difference Learning
	TD Algorithms

