Reinforcement Learning

Lecture 6: Temporal-Difference Reinforcement Learning

Niranjan Deshpande
Minor in Al, IT Ropar

April 22, 2025

1/23



Today's Agenda

1. Why TD Learning
2. Temporal Difference Learning

3. TD Algorithms

2/23



Why Temporal-Difference Learning?

® Monte Carlo (MC): Learns from complete episodes — must wait until the end.

¢ Dynamic Programming (DP): Requires a model of the environment — impractical
for many real problems.

e TD Learning:

® | earns directly from raw experience — like MC.
® Does not need a model — like MC.

® Updates after each step — like DP.

TD Learning = Sample-based like MC + Bootstrapped like DP

3/23



[Mc: Full Episodej DP: Uses Model

Wait — Wait — Wait — Update Model — Evaluate — Update

[TD: Online Update]

Step — Observe — Update

4/23



Aspect MC DP TD
Model required? No Yes No
Learns from samples? | Yes No (uses full | Yes
model)

Bootstraps? No Yes Yes
Updates after every | No (waits for | Yes Yes
step? episode end)

Converges with in- | No Yes Yes
complete episodes?

Policy evaluation? Yes Yes Yes
Suitable for online | No No Yes

learning?

MC vs DP vs TD: Key Comparison

5/23



The General TD Learning Rule

Core idea: Temporal-Difference methods update estimates using other learned estimates.

Generic TD update rule:

New Estimate = Old Estimate + « - (Target — Old Estimate)

® «: learning rate (how much we trust the new info).
® Target: a short-term approximation of long-term return.

® Works for both value functions and Q-functions.

6/23



Understanding TD Error

TD Error measures how “surprised” the agent is by what it just observed:

(St = re4+1 + ’}/V(SH_]_) — V(St)
——

Better estimate (TD Target)  Current estimate

Why is this useful?

If TD Error = 0, then our current guess is already good.
If TD Error # 0, we use it to improve our estimate.

New Estimate = Old Estimate + « - (Target — Old Estimate)

7/23



TD Algorithms Overview

Temporal-Difference methods can be divided into two broad categories:

® TD Prediction: Estimate the value function V™ (s) for a given policy .
* TD(0)
® TD(\)

e TD Control: Learn the optimal policy 7* by improving the action-value function

Q(s, a).
® SARSA (On-policy)
® Q-Learning (Off-policy)
® Expected SARSA
® Double Q-Learning

8/23



All TD methods:

® | earn from experience

® Do not require a model of the environment

® Use bootstrapping — they update based on current estimates

9/23



TD Prediction

TD(0) — One-Step Learning

Goal: Estimate the value function V™ (s) for a given policy 7 using experience.

TD(O0) is the simplest TD prediction method:
® Updates value estimates after every single step.

® Uses the immediate reward and the value of the next state.

® Does not wait until the end of an episode.

Update Rule:
V(St) — V(St) + - [rt+1 + ’)/V(St+1) — V(St)]

where:
® rer1 +yV(ser1): TD target (bootstrapped estimate)
® V/(s¢): current estimate

® ;. TD error = target - estimate
10/23



TD Prediction
TD(0) — Algorithm

Tabular TD(0) for estimating v

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]

Loop for each episode:

Initialize S

Loop for each step of episode:
A « action given by 7 for §
Take action A, observe R, S’
V(S) « V(9) +ﬂ[B-+- AV (S') -
S+ 5

until S is terminal

Initialize V' (s), for all s € 8T, arbitrarily except that V(terminal) = 0

V(S)]

11/23



TD Prediction

Beyond TD(0) - Other Algorithms

TD(0) uses a one-step lookahead to update value estimates. But there are more general
methods that strike a balance between TD and Monte Carlo.

1. TD(\) — Eligibility Traces
e Combines ideas from TD(0) and Monte Carlo.

® Uses multiple-step returns (1-step, 2-step, ..., full return).

e Controlled by A € [0, 1]:
® )\ =0: becomes TD(0)

® )\ = 1: approximates Monte Carlo

12/23



2. Expected Updates (e.g., Expected SARSA)
® Use expected value of the next state under a stochastic policy.
® Reduce variance by averaging over all actions.

These generalizations:
® Improve learning stability

® (Create smoother trade-offs between bias and variance

13/23



TD Control

SARSA — On-Policy Learning

SARSA stands for:

State (s;) — Action (a;) — Reward (r¢41) — Next State (s¢+1) — Next Action (ary1)

® |t is an on-policy TD control method.

® Learns the action-value function Q(s, a) while following the same policy used for
acting.

® Usually uses an e-greedy exploration strategy.

Key Idea: SARSA updates Q-values based on the action the agent actually took —
including random actions due to exploration.

Goal: Learn Q™ (s, a), the expected return of the current behavior policy.

14/23



SARSA — Update Rule and Learning Process

SARSA Update Rule:

Q(st,at) < Q(st,ar) + o - [reg1 + YQ(Se41, ar41) — Q(se, at)]

Learning loop:

® Choose action a; from s; using e-greedy.

Take a¢, observe riy1, St41.

Choose a;;1 from s;11 using same policy.

Update Q(st, a¢) using the rule above.
® Repeat.
Why On-Policy? The update uses the actual action a; 1 taken by the current policy —

even if it was random.
15/23



SARSA - Algorithm

Sarsa (on-policy TD control) for estimating () -

Algorithm parameters: step size o € (0, 1], small £ > 0
Initialize Q(s, a), for all s € §7, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q@ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, 5’
Choose A’ from S using policy derived from @ (e.g., s-greedy)
Q(S,A) + Q(S, A) + Q[R +4Q(S", A — Q(S, A)]
S+ 85 A« A
until S is terminal

16/23



TD Control

Q-Learning — Off-Policy Learning

Q-Learning is an off-policy TD control algorithm.

Goal: Learn the optimal action-value function Q*(s, a), regardless of how the agent
behaves during learning.

Key Idea: Even if the agent explores (e.g., using e-greedy), it always updates its
Q-values as if it acted optimally.

® |gnores what action the agent actually took in the next state.
® |nstead, it assumes the best possible action was taken.

® This makes it more optimistic — converges to the optimal policy.

Used widely in RL: Simple, powerful, and converges under mild conditions.

17/23



Q-Learning — Update Rule and Learning Process

Q-Learning Update Rule:

Q(st,ae) + Q(st,ar) + - [ft+1 + 7y max Q(st+1,a) — Q(st, at)}

Learning loop:
® Choose action a; from s; using e-greedy.

® Take a;, observe rii1, Sty1-

e Compute the best next action: max, Q(st+1,a).

Update Q(st, a¢) using the rule above.
® Repeat.
Why Off-Policy? It updates using the greedy action, not the action actually taken

during exploration.
18/23



Q-Learning - Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ .

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) « Q(S,A) + a[R + ymax, Q(5,a) — Q(S, A)]
S+ S

until S is terminal

19/23



SARSA vs Q-Learning

On-Policy vs Off-Policy

Aspect

SARSA (On-Policy)

Q-Learning (Off-Policy)

Policy Type

Learns value of current be-
havior policy

Learns value of optimal
greedy policy

Next Action Used

ary1 ~ w (actual action
taken)

max, Q(st+1, a) (greedy)

Update Rule

Q(st,ar) <+ Q(st,ar) +
afr 4+ YQ(sty1,ar1) —
Q(St7af)]

Q(st,ar) <+ Q(st,ar) +
alr + ymax, Q(sty1,a) —

Q(st, at)]

Exploration-aware

Yes

No

Risk Behavior

Safer, cautious learning

More aggressive, optimistic

20/23



e-Greedy Action Selection

e With probability e: choose a random action (exploration)

e With probability 1 — e: choose the action with the highest Q-value
(exploitation)

Pseudocode:

def epsilon_greedy(Q, state, epsilon):
if random() < epsilon:
return random_action()
else:
return argmax_a Q[state] [a]

Used in: Both SARSA and Q-Learning during action selection

21/23



Code Comparison: SARSA vs Q-Learning

SARSA: On-Policy Q-Learning: Off-Policy

a_t = epsilon_greedy(Q, s_t)
s_tl, r = env.step(a_t)
a_tl = epsilon_greedy(Q, s_t1)

a_t = epsilon_greedy(Q, s_t)
s_tl, r = env.step(a_t)

Qls_tl[a_t] += alpha * (
r + gamma * max(Q[s_t1])

- QIs_t]l[a_t]

Qls_tl[a_t] += alpha * (
r + gamma * Q[s_t1][a_t1]
- Qls_tl[a_t]

) )

Note: In SARSA, the next action is sampled and used in the update. In Q-learning, we
assume the next action is always the best one.

Common c-greedy Policy (used in both):

22/23



Summary: Temporal-Difference Learning

® TD Learning combines the strengths of:

® Monte Carlo: Learns from raw experience (no model)

® Dynamic Programming: Bootstraps estimates

TD(0): One-step prediction algorithm V/(s;) = V/(s¢) + a[rer1 + 7V (se1) — V(st)]

SARSA (On-Policy): Learns from the action actually taken, even if it's random.

Q-Learning (Off-Policy): Learns assuming the best possible action is always taken.

e-greedy: Balances exploration and exploitation in both methods.

TD = Learn while you go. Improve while you explore.

23/23



	Why TD Learning
	Temporal Difference Learning
	TD Algorithms

