
Temporal-Difference Reinforcement Learning

Minor in AI - IIT ROPAR

22nd April, 2025

A Journey Into Temporal-Difference Learning

In a vast land where no maps had ever been drawn, a solitary traveler journeyed through the unknown.
Hills rose like questions, rivers curved with mystery, and every path forked into uncertainty. No signs
pointed the way, and no one could say what reward—or danger—waited beyond the next bend. The
traveler had only one compass: experience.

At first, they walked long and winding paths, waiting until the end of each journey to pause and
reflect. Only then did they count the treasures earned and the pitfalls endured. They traced their steps
backward in memory, adjusting their judgment of each place based on the final tally. This was like
learning from complete stories—Monte Carlo learning. It was honest, grounded in truth, but terribly
slow. When paths were long or endless, the traveler often had to wait too long to learn anything useful.

One day, the traveler encountered a group of scholars who studied the land from towers of knowledge.
They were the keepers of Dynamic Programming. They didn’t need to walk the trails; they already knew
the rules of the land—the likelihood of moving from one place to another, and the reward each action
would bring. With this perfect model, they computed the value of every step through pure reason. It
was powerful—almost magical. But the traveler could only watch in envy. The land held no such secrets
for them. The world was a black box.

So, the traveler did something different.
Rather than waiting until the end of a journey, or hoping for a map they would never receive, they

began to learn at every step. After each move, they took the reward at face value, then guessed what the
future might hold, adjusting their beliefs immediately. They didn’t need the full picture—just a glimpse
ahead was enough. It wasn’t perfect, but it was fast, flexible, and surprisingly wise over time.

This was Temporal-Difference learning: a balance between dreaming and remembering, between
guessing and knowing. The traveler no longer feared the unknown. With every footfall, they learned—step
by step, moment by moment—crafting a mental map not of the land itself, but of how to move wisely
within it.

1



Why Temporal-Difference (TD) Learning?

TD learning solves the core prediction problem in reinforcement learning without requiring a model or
full episode completion. It blends:

• Sampling (like Monte Carlo): Learns from raw experience.

• Bootstrapping (like DP): Uses estimates of future values to update current values.

This combination allows for:

• Online, incremental updates

• Model-free learning

• Adaptability to both episodic and continuing tasks

The General TD Learning Rule

Core Idea:
Temporal-Difference (TD) methods are based on the principle of updating estimates using other learned
estimates, rather than waiting for a final, complete return (as in Monte Carlo methods), or computing
expectations with a known model (as in Dynamic Programming).

Generic TD Update Rule:

New Estimate← Old Estimate + α · (Target−Old Estimate)

This is the core update equation used across all TD methods. Each component plays an important role:

• α ∈ (0, 1] is the learning rate, which controls how quickly or cautiously the estimate is adjusted.
A smaller α results in slower but more stable learning. A larger α leads to faster learning but can
introduce instability.

• Old Estimate refers to the current estimated value of a quantity (e.g., value function V (s) or
action-value function Q(s, a)).

• Target is a short-term approximation of the long-term return. It typically includes the
immediate reward received and a bootstrapped estimate of the next value.

Why This Rule Works:
This formula adjusts the old estimate in the direction of the new target. The amount of adjustment

is proportional to the difference between the new target and the old value—this difference is called the
Temporal-Difference (TD) Error:

δ = Target−Old Estimate

Then the update rule becomes:

New Estimate = Old Estimate + α · δ

This idea underlies both state-value learning and action-value learning in TD methods.

Applicability:

• This update rule is used for value functions such as V (s), where s is a state.

• It is also used for Q-functions or action-value functions Q(s, a), where the value is associated with
taking action a in state s.

2



Understanding the TD Error

Temporal-Difference (TD) Error is a fundamental concept in TD learning. It measures how much
the agent’s prediction differs from what it just experienced—in other words, it quantifies the degree of
surprise.

Definition:
The TD error at time step t, denoted δt, is defined as:

δt = rt+1 + γV (st+1)− V (st)

Let us break down each component:

• rt+1: The immediate reward received after taking an action at time t.

• γ ∈ [0, 1]: The discount factor, which reduces the importance of future rewards. A higher γ places
more emphasis on long-term outcomes.

• V (st+1): The current estimate of the value of the next state st+1.

• V (st): The current estimate of the value of the present state st.

Together, the term rt+1 + γV (st+1) is referred to as the TD Target or Better Estimate, since it
represents an improved estimate of the return by combining the observed reward with the value of the
next state.
The term V (st) is the Current Estimate, the value we previously believed was accurate.

Interpretation:

• If δt = 0, then the observed outcome perfectly matches our expectations. The estimate V (st) is
already accurate, and no update is needed.

• If δt ̸= 0, the TD error provides a signal indicating the direction and magnitude of the adjustment
needed to improve the estimate.

Update Using TD Error:
We incorporate the TD error into the learning update:

V (st)← V (st) + α · δt
Substituting the expression for δt, this becomes:

V (st)← V (st) + α · (rt+1 + γV (st+1)− V (st))

This is equivalent to the generic TD learning rule:

New Estimate = Old Estimate + α · (Target−Old Estimate)

Temporal-Difference Learning (TD(0)) — One-Step Learning

The goal of Temporal-Difference (TD) learning, specifically TD(0), is to estimate the value function
V π(s) for a given policy π, which defines the way the agent behaves in the environment. The value
function V π(s) represents the expected return (cumulative discounted reward) from state s under policy
π.

TD(0) is one of the simplest forms of TD prediction methods, where the updates to the value function
are made after every individual time step, instead of waiting for an entire episode to conclude. TD(0)
estimates the value of state st by incorporating the immediate reward rt+1 and the value of the next
state st+1, making it an efficient method for online learning.

3



Detailed Explanation of the TD(0) Algorithm

Initialization

At the beginning, we initialize the value function V (s) for all states s, except for terminal states (which
might have predefined values like zero). These initial values are typically chosen arbitrarily, except for
terminal states which can be set to zero or a known value. We also initialize the learning rate α, a small
positive constant, and the discount factor γ, which is a value between 0 and 1.

V (s) is initialized arbitrarily for all states s (except terminal states).

α ∈ (0, 1] is the learning rate.

γ ∈ [0, 1) is the discount factor.

For Each Episode

We start the learning process by iterating through episodes. In each episode, the agent starts from a
particular initial state s0, and interacts with the environment by following the policy π. At each step,
the agent will take an action, observe the reward and transition to a new state, then update the value
estimate for the current state.

For each episode:

s0 ← Initial state

For Each Step

- The agent takes an action at according to the policy π. This is typically an action chosen based on the
state st and the agent’s policy, which could be deterministic or stochastic. - The agent then receives an
immediate reward rt+1 and transitions to the next state st+1. - The agent updates the value function
for the state st based on the new information it has acquired (the reward rt+1 and the value of the next
state V (st+1)) using the TD(0) update rule.

TD(0) Update Rule

The core of the TD(0) algorithm is the update rule that modifies the value of the current state st based
on the new information. The update rule can be expressed as:

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st))

• rt+1: This is the immediate reward received by the agent after taking action at and transitioning
to state st+1.

• γ: The discount factor, which determines how much importance the agent gives to future rewards.
If γ is close to 1, the agent values future rewards almost as much as immediate rewards. If γ is
close to 0, the agent only cares about immediate rewards.

• V (st): The current estimate of the value of state st, before the update.

• V (st+1): The estimated value of the next state st+1.

The term rt+1 + γV (st+1) is known as the TD target, which is the updated estimate of the value
of state st. The difference between this TD target and the current value V (st) is called the TD error
δt, which reflects how much the current estimate deviates from the updated target.

δt = rt+1 + γV (st+1)− V (st)

The agent uses this error δt to adjust its estimate V (st) in the direction of the new estimate.

4



End of Episode

Once the episode terminates (e.g., the agent reaches a terminal state or a predefined step limit), the
value function for each state will have been updated based on the agent’s experiences during the episode.
The algorithm then proceeds to the next episode, where the value function is further refined as the agent
continues to explore the environment.

Repeat

The process is repeated over multiple episodes, with the value estimates V (st) gradually converging
towards the true value function V π(s) for the given policy π. 0

TD Prediction Beyond TD(0) – Other Algorithms

While TD(0) is a simple and efficient method for estimating the value function V π(s) of a given policy
π, it only looks at a one-step lookahead to update value estimates. This can be limiting in certain cases,
as it doesn’t take into account the wider context of the agent’s future trajectory. To overcome this
limitation, we introduce more general methods, such as TD() and Expected Updates, that strike a
balance between TD and Monte Carlo methods.

These more general methods incorporate the benefits of multi-step returns, providing more flexibility
in the way value functions are updated.

—

1. TD() – Eligibility Traces

TD() is a generalization of TD(0) that combines ideas from both Temporal-Difference methods and
Monte Carlo methods. The key feature of TD() is the introduction of eligibility traces, which allow
the algorithm to use information from multiple steps (instead of just one) when updating the value
function.

Key Ideas:

• Eligibility Traces: TD() introduces eligibility traces, which are a way of maintaining a memory
of states that have been visited. This allows the agent to update not only the value of the current
state but also the values of previously visited states. The eligibility trace for each state is updated
over time.

• Multiple-Step Returns: TD() updates the value function based on multiple-step returns, which
include 1-step, 2-step, or even the full Monte Carlo return. The longer the horizon considered, the
closer the algorithm approximates Monte Carlo.

• Parameter λ: The parameter λ controls how much influence past states have on the current
update. It also controls the decay of eligibility traces.

– λ = 0: Reduces to TD(0), where only the immediate next state is considered.

– λ = 1: Approximates Monte Carlo methods, using the full return.

– For 0 < λ < 1: The updates are a mix between TD and Monte Carlo, where the influence of
past states decreases as we look further into the future.

The Update Rule in TD():

In TD(), an eligibility trace is maintained for each state s visited during an episode. The eligibility trace
E(s) for a state st is updated as follows:

E(st)← γλE(st) + 1{st=s}

Where:

• E(st): Eligibility trace for state st at time t,

5



• γ: Discount factor,

• λ: The decay parameter controlling the trace length,

• 1{st=s} is an indicator function which is 1 if the state is s, and 0 otherwise.

The value function update in TD() is then:

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st))E(st)

Where:

• rt+1: The reward received after taking action at in state st,

• V (st): The current estimate of the value of state st,

• V (st+1): The value estimate for the next state st+1,

• E(st): The eligibility trace for state st, determining how much influence past states should have
on the update.

This update rule is a weighted combination of the immediate reward and the value of the next state,
with the eligibility trace providing the weighting mechanism.

Effect of λ:

- For λ = 0, this update rule reduces to TD(0), where only the immediate reward and the next state’s
value contribute to the update. - For λ = 1, the update rule becomes Monte Carlo, where the update is
based on the full return from the current state to the end of the episode.

—

2. Expected Updates (e.g., Expected SARSA)

Expected Updates methods, such as Expected SARSA, differ from TD methods like SARSA or
Q-learning by using the expected value of the next state under a stochastic policy, rather than the actual
next state value. This reduces the variance of updates and can improve the stability of learning.

Key Ideas:

• Stochastic Policy: In many environments, the agent may follow a stochastic policy, meaning
that the action taken at a given state st is not deterministic but probabilistic. For instance, in an
ϵ-greedy policy, the agent typically selects the best action with probability 1 − ϵ and explores a
random action with probability ϵ.

• Expected Value: In Expected SARSA, instead of updating based on the action actually taken
at the next step, we average over all possible actions the agent might take at the next state. This
reduces the variance of the update, which can make the learning process more stable.

The Update Rule in Expected SARSA:

The update rule for Expected SARSA is as follows:

Q(st, at)← Q(st, at) + α
(
rt+1 + γEat+1

[Q(st+1, at+1)]−Q(st, at)
)

Where:

• Q(st, at): The action-value function for state st and action at,

• rt+1: The reward obtained after taking action at in state st,

• γ: The discount factor,

• Eat+1
[Q(st+1, at+1)]: The expected value of the next state’s action-value function, averaged over

all possible actions the agent could take at state st+1 according to the policy π.

6



The key difference between Expected SARSA and standard SARSA is that Expected SARSA uses
the expected value of Q(st+1, at+1), averaged over all possible actions at+1, rather than using the value
corresponding to the actual action taken at st+1. This reduces variance and helps to stabilize the learning
process.

SARSA – On-Policy Learning

SARSA stands for:

State(st)→ Action(at)→ Reward(rt+1)→ Next State(st+1)→ Next Action(at+1)

It is a model-free, on-policy Temporal-Difference (TD) control algorithm used in reinforcement learn-
ing. Let’s break down its components and how it works in detail.

—

What Does SARSA Do?

SARSA is used to learn the action-value function Q(s, a), which represents the expected return (or
value) of performing a particular action a in a particular state s under the current policy π. The goal is
to learn a policy that maximizes the cumulative expected reward by improving Q(s, a) over time.

Key Characteristics of SARSA: - On-policy: SARSA is an on-policy algorithm because it learns
about the action-value function based on the actions taken by the agent following the policy π that is
being improved. Importantly, the same policy is used both for selecting actions and for updating the
Q-values.

- Exploration: SARSA typically uses an ϵ-greedy exploration strategy. This means that most
of the time the agent will pick the action that maximizes the expected reward according to the current
estimate of Q(s, a), but with a small probability ϵ, the agent will pick a random action to explore the
environment.

—

How Does SARSA Update the Q-values?

SARSA’s main contribution is in how it updates the action-value function Q(s, a) during the learning
process. The algorithm follows the TD(0) approach, which means it updates Q(s, a) based on a
one-step lookahead.

SARSA Update Rule:
At each time step t, when the agent is in state st and takes action at, it receives a reward rt+1 and

ends up in state st+1. The agent then takes an action at+1 in the next state st+1 according to the same
policy π. The Q-value update is:

Q(st, at)← Q(st, at) + α · [rt+1 + γQ(st+1, at+1)−Q(st, at)]

Where: - Q(st, at) is the current action-value estimate for taking action at in state st, - α is the
learning rate, controlling how much new information should be incorporated into the Q-value update,
- rt+1 is the immediate reward received after taking action at in state st, - γ is the discount factor,
which determines the importance of future rewards relative to immediate rewards, - Q(st+1, at+1) is the
Q-value for the next state st+1 and the next action at+1 chosen according to the current policy.

The term:
rt+1 + γQ(st+1, at+1)

represents the TD target, or the updated estimate for the value of the current state-action pair, incor-
porating the reward received and the expected future value from state st+1.

The difference between this target and the current Q-value:

rt+1 + γQ(st+1, at+1)−Q(st, at)

is the TD error. This error measures how much the current Q-value is off from the target value. The
update rule moves Q(st, at) towards the target by an amount proportional to the learning rate α.

—

7



Learning Process in SARSA

The learning process in SARSA involves iterating through multiple episodes where the agent interacts
with the environment, takes actions, receives rewards, and updates the Q-values accordingly.

SARSA Learning Loop:
- Choose an action at from state st according to the ϵ-greedy policy. This means: - With

probability 1 − ϵ, choose the action that maximizes Q(st, at), - With probability ϵ, choose a random
action for exploration.

- Take the action at and observe the reward rt+1 and the next state st+1.
- Choose the next action at+1 from state st+1 using the same policy π (i.e., use ϵ-greedy on

Q(st+1, at+1)).
- Update Q(st, at) using the SARSA update rule:

Q(st, at)← Q(st, at) + α · [rt+1 + γQ(st+1, at+1)−Q(st, at)]

- Repeat this process for each time step until the episode ends.
- After each episode, the process starts again with the initial state.
—

Why is SARSA On-Policy?

The key feature that makes SARSA an on-policy method is that it updates its Q-values based on the
actions it actually takes in the environment, following the same policy used to select those actions.

- The ”On-Policy” nature means that the update depends on the real actions taken by the
agent, including those that are part of the exploration process. Even if the action is random (due to
exploration), the Q-value is updated based on that action.

This is in contrast to Off-policy methods like Q-learning, where the Q-values are updated based on
the optimal actions, not necessarily the ones actually taken by the agent.

In SARSA, the update rule reflects the real-world experience of the agent, including its exploration
of the environment, and doesn’t assume that the agent will always take the optimal action.

Q-Learning – Off-Policy Learning

Q-Learning is a model-free, off-policy Temporal-Difference (TD) control algorithm used in reinforcement
learning. The goal of Q-Learning is to learn the optimal action-value function Q∗(s, a), which
represents the maximum expected cumulative reward the agent can achieve by taking action a in state
s and following the optimal policy thereafter.

—

What Does Q-Learning Do?

The fundamental goal of Q-Learning is to learn the optimal policy π∗ that maximizes the expected
reward over time. Unlike on-policy methods like SARSA, Q-Learning is off-policy, meaning that it
learns the optimal policy even if the agent explores using a different policy.

Key Characteristics of Q-Learning: - Off-policy: Q-Learning is an off-policy method because
it updates its Q-values assuming the agent is always taking the optimal action, regardless of the actions
it actually takes during exploration. This contrasts with on-policy methods, which update the Q-values
based on the actions the agent actually takes.

- Exploration and Exploitation: While Q-Learning assumes optimal behavior for Q-value updates,
it still needs exploration to discover the environment’s true dynamics. Typically, an ϵ-greedy strategy is
used, where the agent chooses the best-known action most of the time but occasionally chooses a random
action to explore the environment.

—

How Does Q-Learning Update the Q-values?

Q-Learning uses a greedy update rule, meaning it updates the Q-values as if the agent always selects
the action that maximizes the expected future reward. This contrasts with SARSA, where the agent
updates Q-values based on the actions it actually took.

8



Q-Learning Update Rule:
At each time step t, when the agent is in state st and takes action at, it receives a reward rt+1 and

ends up in state st+1. The Q-value update is:

Q(st, at)← Q(st, at) + α ·
[
rt+1 + γ ·max

a
Q(st+1, a)−Q(st, at)

]
Where: - Q(st, at) is the current action-value estimate for taking action at in state st, - α is the

learning rate, controlling how much new information should be incorporated into the Q-value update,
- rt+1 is the immediate reward received after taking action at in state st, - γ is the discount factor,
which determines the importance of future rewards relative to immediate rewards, - maxa Q(st+1, a)
represents the maximum Q-value of the next state st+1 over all possible actions, i.e., the best possible
future action.

The term:
rt+1 + γ ·max

a
Q(st+1, a)

is the TD target, or the updated estimate for the value of the current state-action pair, incorporating
the reward received and the maximum expected future value from state st+1.

The difference between this target and the current Q-value:

rt+1 + γ ·max
a

Q(st+1, a)−Q(st, at)

is the TD error. This error measures how much the current Q-value is off from the target value. The
update rule moves Q(st, at) towards the target by an amount proportional to the learning rate α.

—

Learning Process in Q-Learning

Q-Learning learns the optimal action-value function by iterating through multiple episodes, where the
agent interacts with the environment, takes actions, receives rewards, and updates the Q-values accord-
ingly.

Q-Learning Learning Loop:
- Choose an action at from state st according to the ϵ-greedy policy. This means: - With

probability 1 − ϵ, choose the action that maximizes Q(st, at), - With probability ϵ, choose a random
action for exploration.

- Take the action at and observe the reward rt+1 and the next state st+1.
- Compute the best next action: Calculate maxa Q(st+1, a), which is the maximum Q-value for

the next state st+1 over all possible actions.
- Update Q(st, at) using the Q-Learning update rule:

Q(st, at)← Q(st, at) + α ·
[
rt+1 + γ ·max

a
Q(st+1, a)−Q(st, at)

]
- Repeat this process for each time step until the episode ends.
- After each episode, the process starts again with the initial state.
—

Why is Q-Learning Off-Policy?

Q-Learning is an off-policy method because it updates the Q-values assuming the agent always takes
the optimal action, regardless of the action actually taken during exploration. Specifically: - The agent
may explore the environment using an exploration policy (e.g., ϵ-greedy). - However, for each update,
Q-Learning assumes that the optimal action was taken in the next state, i.e., it uses the greedy action
according to the current Q-values.

This is in contrast to on-policy methods like SARSA, where the Q-values are updated using the
action that was actually taken, regardless of whether it was optimal or exploratory.

By using the best possible next action in the update (i.e., maxa Q(st+1, a)), Q-Learning ensures that
it converges to the optimal policy, even if the agent does not always act optimally during learning.

9



Aspect SARSA (On-Policy) Q-Learning (Off-Policy)
Policy Type Learns value of current behavior policy Learns value of optimal greedy policy
Next Action at+1 ∼ π (actual action taken) maxa Q(st+1, a) (greedy)

Update Rule
Q(st, at) ← Q(st, at) +
α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

Q(st, at) ← Q(st, at) +
α [rt+1 + γmaxa Q(st+1, a)−Q(st, at)]

Exploration-aware Yes No
Risk Behavior Safer, cautious learning More aggressive, optimistic

Table 1: Comparison of SARSA (On-Policy) and Q-Learning (Off-Policy)

ϵ-Greedy Action Selection

The ϵ-greedy action selection strategy is commonly used in reinforcement learning algorithms, such as
SARSA and Q-Learning, to balance exploration and exploitation. The key idea is that the agent will
explore the environment by choosing random actions with a small probability ϵ, and exploit its knowledge
of the environment (i.e., choose the action with the highest Q-value) with a probability of 1− ϵ.

Explanation

- Exploration: With probability ϵ, the agent chooses a random action, even if it is not necessarily
optimal. This is known as exploration, and it helps the agent gather information about the environment.
- Exploitation: With probability 1− ϵ, the agent selects the action that has the highest Q-value for the
current state, which is the action that it believes will lead to the highest expected reward. This is known
as exploitation, and it allows the agent to take advantage of the knowledge it has already learned.

The value of ϵ typically decreases over time, which means that the agent starts by exploring the
environment more and gradually shifts towards exploitation as it learns more about the optimal policy.
This is referred to as an ϵ-decay schedule, and it helps the agent strike a balance between learning and
optimizing.

Pseudocode

The following pseudocode describes the ϵ-greedy action selection process:

def epsilon_greedy(Q, state, epsilon):

if random() < epsilon:

return random_action() # Explore by choosing a random action

else:

return argmax_a Q[state][a] # Exploit by choosing the action with the highest Q-value

Where: - Q is the action-value function, - state is the current state of the agent, - ϵ is the probability
of choosing a random action (exploration), - random() generates a random number between 0 and 1, -
random action() selects a random action from the set of possible actions, - argmaxaQ[state][a] returns
the action a that maximizes Q(s, a), i.e., the action with the highest Q-value for the given state.

Usage

The ϵ-greedy action selection strategy is used in both:

• SARSA: An on-policy algorithm that updates the action-value function based on the actions the
agent actually takes.

• Q-Learning: An off-policy algorithm that updates the action-value function as if the agent always
takes the optimal action.

In both of these algorithms, ϵ-greedy helps balance the need for exploration (learning about the
environment) and exploitation (using the best-known actions to maximize rewards).

10



Key Takeaways

• TD does learn from experience without needing a model of the environment – it figures things out
by trial and error as it goes.

• TD updates guesses about future rewards after every step instead of waiting until the end of an
episode, making learning faster.

• TD combines actual rewards received with its own predictions to improve its estimates over time.

• TD works for both tasks with clear endings (like games) and ongoing tasks that never stop (like
robot control).

• TD can learn good strategies (policies) while still exploring random actions to discover better
options.

• TD adjusts predictions based on how wrong they were – the bigger the surprise, the bigger the
update.

• TD forms the foundation for popular methods like Q-learning and SARSA that power game AI
and robotics.

• TD handles delayed rewards by gradually assigning credit to the right earlier actions.

• TD works with function approximation (like neural nets) to handle complex, real-world problems.

• TD balances between using what it knows works (exploitation) and trying new things (exploration).

• TD is more efficient than older methods that required complete trial-and-error runs before learning.

• TD naturally handles problems where outcomes are uncertain or partially random.

11


