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1 Learning to Drive: A Reinforcement Learning Jour-

ney

Imagine Sarah, a 16-year-old who just received her learner’s permit and is excited to learn
how to drive. Sarah’s process of learning to drive mirrors the fundamental principles of
reinforcement learning in a way that anyone can understand.

On her first day behind the wheel, Sarah has theoretical knowledge from driver’s
education but little practical experience. Her father sits beside her as they drive through
an empty parking lot. Initially, her movements are awkward—she presses the gas pedal
too hard, causing uncomfortable jerks, and turns the steering wheel either too much or
too little.

Each time Sarah makes a mistake, her father provides immediate feedback: ”Ease up
on the gas,” or ”Turn more gradually.” When she successfully executes a maneuver, he
offers positive reinforcement: ”Great job maintaining that smooth stop!” This feedback
loop—action, consequence, adjustment—is the essence of reinforcement learning.

As weeks pass, Sarah practices regularly. She notices that certain actions consistently
lead to better outcomes. Gradually releasing the brake pedal results in smoother starts.
Looking far ahead helps her maintain a steady lane position. She’s developing what
reinforcement learning calls a ”policy”—a strategy for selecting actions based on her
current situation.

Sarah faces the classic exploration-exploitation dilemma. Should she stick with the
techniques that seem to work (exploitation) or try new approaches that might be better
(exploration)? When practicing in the parking lot, she experiments more freely, trying
different accelerator pressure or turning techniques. On busy roads, she relies on her
proven methods.

At first, Sarah requires immediate feedback for each action. But as she improves,
she begins to understand how her current actions affect future situations—slowing early
for a turn allows for a smoother sequence of maneuvers. This ability to connect present
actions to delayed outcomes is akin to how reinforcement learning algorithms handle the
challenge of delayed rewards.

Sarah also learns to process multiple inputs simultaneously—monitoring her speed,
watching for pedestrians, maintaining lane position, and anticipating traffic signals. Her
brain creates a mental model of how driving works, allowing her to predict outcomes
of her actions in different situations—similar to how model-based reinforcement learning
algorithms operate.

After six months of practice, Sarah passes her driving test. Her learning doesn’t
stop there—she continues to refine her driving policy through experience, adapting to
new situations like highway driving, adverse weather conditions, or unfamiliar vehicles.
This lifelong learning and adaptation exemplifies how reinforcement learning continuously
improves performance over time.

Sarah’s journey from novice to competent driver illustrates the core principles of
reinforcement learning: learning through trial and error, balancing exploration and ex-
ploitation, connecting actions to both immediate and delayed outcomes, and continuously
adapting to maximize long-term success. As we delve into the technical aspects of rein-
forcement learning, keep Sarah’s driving experience in mind—the mathematical concepts
may be complex, but the fundamental process mirrors how humans naturally learn many
skills.
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Sarah(Agent) Car & Road(Environment)

Actions(steering, braking)

Feedback(car’s response)

Instructor(Reward Signal)

G̈reat job!¨C̈areful!observes

Figure 1: The driving reinforcement learning feedback loop

Exploration Exploitation

Figure 2: Exploration in a safe environment vs. exploitation on busy roads

ApproachingIntersection SmoothStop

AbruptStop

Gradual braking

+5 points

Late braking -2 points

Instructor Feedback

”Apply brakes earlier”
”Well done!”

”Too sudden!”

Figure 3: State-action-reward example from Sarah’s driving lessons
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2 Introduction to Reinforcement Learning

2.1 Definition and Basic Concepts

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to
make decisions by interacting with an environment. Unlike supervised learning (which
requires labeled data) or unsupervised learning (which discovers patterns in unlabeled
data), RL learns from experiences and rewards.

Definition: Reinforcement Learning is a computational approach to learning
whereby an agent tries to maximize the total amount of reward it receives while
interacting with a complex, uncertain environment.

The key characteristic that distinguishes RL from other machine learning approaches
is its trial-and-error nature combined with the delayed reward mechanism. The agent
must discover which actions yield the highest rewards by trying them out.

2.2 Comparison with Other Learning Paradigms

Supervised Learn-
ing

Unsupervised
Learning

Reinforcement
Learning

Learns from labeled
examples provided by
an external supervisor

Learns patterns from
unlabeled data

Learns from interac-
tion with environment

Direct feedback for
each example

No feedback Delayed feedback (re-
ward signal)

Goal: Predict correct
outputs

Goal: Find hidden
structure

Goal: Maximize total
reward

Examples: Classifica-
tion, regression

Examples: Clustering,
dimensionality reduc-
tion

Examples: Game
playing, robotics,
resource management

2.3 Real-world Applications

Reinforcement Learning has shown remarkable success in various domains:

• Games:

– AlphaGo/AlphaZero (Go, Chess, Shogi)

– OpenAI Five (Dota 2)

– AlphaStar (StarCraft II)

• Robotics:

– Robot manipulation and locomotion

– Dexterous manipulation

– Soft robotics control

• Autonomous Driving:
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– Lane keeping

– Navigation

– Decision making at intersections

• Finance:

– Algorithmic trading

– Portfolio management

– Risk management

• Other Applications:

– Energy management (smart grids)

– Healthcare (treatment optimization)

– Recommendation systems

– Natural language processing tasks

Reinforcement Learning

Games

Robotics

Autonomous Driving

Finance

Energy Management

Healthcare

Figure 4: Applications of Reinforcement Learning
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3 Key Components of Reinforcement Learning

The reinforcement learning framework consists of several core components that interact
in a continuous cycle.

Agent Environment
Action at

State st+1

Reward rt+1

Figure 5: The Agent-Environment Interaction in Reinforcement Learning

3.1 Agent

The agent is the learner and decision-maker that interacts with the environment.

The agent has these key characteristics:

• Makes decisions by selecting actions

• Receives feedback in form of rewards and new states

• Contains the policy (strategy for selecting actions)

• May maintain value functions, models, or other components

• Aims to maximize cumulative reward over time

3.2 Environment

The environment is everything outside the agent that the agent interacts with.

Environment characteristics:

• Responds to agent’s actions

• Presents new situations (states) to the agent

• Provides rewards

• Can be deterministic or stochastic

• Can be fully or partially observable

• Can be episodic or continuing

3.3 State/Observation

The state (or observation) represents the current situation of the environment.
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Important aspects of states:

• Complete state: Contains all information about the environment (may not be
available to the agent)

• Observation: Information available to the agent (may be partial)

• State features: Individual components that make up the state representation

• State space: The set of all possible states

Mathematically, we often denote the state at time t as st ∈ S, where S is the state
space.

3.4 Action

Actions are the decisions made by the agent that influence the environment.

Key points about actions:

• Can be discrete (finite set of choices) or continuous (real-valued)

• The set of available actions may depend on the current state

• Action space: The set of all possible actions

• Actions cause state transitions and generate rewards

We typically denote an action at time t as at ∈ A(st), where A(st) is the set of actions
available in state st.

3.5 Reward

The reward is a scalar signal that indicates how good the agent’s action was.

Reward characteristics:

• Immediate feedback on the agent’s action

• Typically represented as a scalar value

• Can be positive (desirable outcomes), negative (penalties), or zero

• The agent’s goal is to maximize cumulative reward, not just immediate reward

• Reward design is crucial for successful RL applications

The reward at time t is often denoted as rt = r(st−1, at−1, st), indicating it depends
on the previous state, the action taken, and the resulting state.

3.6 Policy

The policy is the agent’s strategy for selecting actions.
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Policy properties:

• Maps states to actions or probability distributions over actions

• Can be deterministic: a = π(s)

• Can be stochastic: π(a|s) = P (At = a|St = s)

• The ultimate goal of RL is to find an optimal policy π∗

• Can be represented by various structures (tables, neural networks, etc.)
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4 Exploration vs. Exploitation Dilemma

One of the fundamental challenges in reinforcement learning is balancing exploration
(trying new actions to discover their effects) versus exploitation (using known good actions
to maximize reward).

4.1 The Dilemma

Exploitation: Taking the action that is expected to yield the highest reward based
on current knowledge.
Exploration: Taking actions to gain more information about the environment,
potentially discovering better strategies.

This dilemma arises because:

• Too much exploitation might miss better long-term strategies

• Too much exploration might waste resources trying suboptimal actions

• The optimal balance changes over time as learning progresses

4.2 Common Approaches to Balance Exploration and Exploita-
tion

1. ϵ-greedy: With probability 1− ϵ, take the greedy action (exploitation); with prob-
ability ϵ, take a random action (exploration).

2. Decaying ϵ-greedy: Start with a high ϵ value and gradually decrease it over time.

3. Softmax exploration: Select actions according to a probability distribution based
on their estimated values.

P (a|s) = eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ
(1)

where τ is a temperature parameter controlling exploration.

4. Upper Confidence Bound (UCB): Select actions based on their estimated value
plus an exploration bonus.

at = argmax
a

[
Q(st, a) + c

√
ln t

N(st, a)

]
(2)

where N(st, a) counts how often action a has been taken in state st.

5. Thompson Sampling: Maintain a probability distribution over possible values
and sample from this distribution.

6. Intrinsic Motivation/Curiosity: Generate internal rewards for exploring novel
states.
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Time

Importance

Exploration Exploitation

Figure 6: Typical balance between exploration and exploitation over time

5 Types of Reinforcement Learning Algorithms

Reinforcement learning algorithms can be categorized along several dimensions. Under-
standing these categories helps in selecting appropriate algorithms for specific problems.

5.1 Model-based vs. Model-free

Model-based RL:

• Builds an explicit model of the environment

• Model predicts state transitions and rewards: P (s′|s, a) and r(s, a, s′)

• Can use the model for planning (simulating possible futures)

• Examples: Dyna-Q, MBVE (Model-Based Value Estimation)

• Advantages: Sample efficiency, planning capability

• Disadvantages: Model errors can affect performance

Model-free RL:

• Learns directly from experience without building an explicit model

• Estimates value functions or policies directly

• Examples: Q-learning, SARSA, Policy Gradient methods

• Advantages: Simplicity, robustness to model errors

• Disadvantages: Often requires more samples
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Model-based RL Model-free RL

Environment Model + Planning Direct Value/Policy Learning

Less prior knowledge

More sample efficiency

Figure 7: Model-based vs. Model-free Reinforcement Learning

5.2 Value-based vs. Policy-based

Value-based RL:

• Learns value functions (state values V(s) or state-action values Q(s,a))

• Derives policy from value function (e.g., greedy with respect to Q)

• Examples: Q-learning, DQN, SARSA

• Advantages: Often more stable learning

• Disadvantages: Limited to discrete or discretized action spaces

Policy-based RL:

• Directly learns the policy function π(a|s)

• Optimizes policy parameters to maximize expected return

• Examples: REINFORCE, PPO, TRPO

• Advantages: Works well with continuous actions, can learn stochastic policies

• Disadvantages: Often high variance in learning

Actor-Critic:

• Combines value-based and policy-based approaches

• Actor (policy) determines actions

• Critic (value function) evaluates actions

• Examples: A2C, A3C, SAC, TD3

• Advantages: Combines benefits of both approaches
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5.3 On-policy vs. Off-policy

On-policy RL:

• Learns about the policy being currently followed

• Must generate new data when policy changes

• Examples: SARSA, PPO, TRPO

• Advantages: Often more stable learning

• Disadvantages: Less sample-efficient

Off-policy RL:

• Can learn about optimal policy while following a different (behavior) policy

• Can reuse past experience (experience replay)

• Examples: Q-learning, DQN, SAC

• Advantages: More sample-efficient, can learn from demonstrations

• Disadvantages: Can be less stable, may require importance sampling

5.4 Deterministic vs. Stochastic Policies

Deterministic policies:

• Map each state to a single action: a = π(s)

• Examples: DPG, DDPG, TD3

• Advantages: Simpler optimization in continuous action spaces

• Disadvantages: Cannot handle multimodal optimal policies

Stochastic policies:

• Map each state to a probability distribution over actions: π(a|s)

• Examples: REINFORCE, A2C, PPO, SAC

• Advantages: Natural exploration, can handle multimodal optimal policies

• Disadvantages: More complex optimization

13



RL Algorithms

Model-based Model-free

Value-based Policy-based

Actor-Critic
Q-learning REINFORCE

A2C/PPO

Figure 8: Taxonomy of Reinforcement Learning Algorithms

6 OpenAI Gym

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algo-
rithms. It provides a standard API to communicate between learning algorithms and
environments, and a standard set of environments.

6.1 Introduction to the Library

OpenAI Gym was designed with these principles:

• Simplicity: Easy to use, understand, and extend

• Reproducibility: Standardized environments for fair comparison

• Diversity: Wide range of environments with varying complexity

• Compatibility: Works with any numerical computation library (NumPy, Tensor-
Flow, PyTorch, etc.)

Basic installation:

pip install gym

6.2 Environment Setup

Creating and initializing a Gym environment:

14



import gym

# Create environment

env = gym.make(’CartPole-v1’)

# Reset environment to initial state

observation = env.reset()

# Display environment (optional)

env.render()

6.3 Action and Observation Spaces

Gym environments define their observation and action spaces using the Space classes.

Common space types:

• Discrete: A finite set of values {0, 1, . . . , n− 1}

• Box: An n-dimensional continuous space with bounds

• Dict: A dictionary of simpler spaces

• Tuple: A tuple of simpler spaces

• MultiBinary: A space of binary vectors

• MultiDiscrete: A vector of discrete spaces

Accessing space information:

print("Action space:", env.action_space)

print("Observation space:", env.observation_space)

# For Box spaces, get dimensions and bounds

if isinstance(env.observation_space, gym.spaces.Box):

print("Observation dimensions:", env.observation_space.shape)

print("Observation bounds:", env.observation_space.low, env.observation_space.high)

6.4 Interacting with Environments

The core interaction loop in Gym:
Key components:

• reset(): Initializes the environment and returns initial observation

• step(action): Takes the specified action and returns:

– observation: The new state

– reward: The reward for the action

– done: Whether the episode has ended

15



Algorithm 1 Basic OpenAI Gym Interaction Loop

1: observation← env.reset()
2: done← False
3: while not done do
4: action← agent.choose action(observation)
5: observation, reward, done, info← env.step(action)
6: agent.learn(observation, reward, done)
7: env.render() ▷ Optional visualization
8: end while
9: env.close()

– info: Additional information (debug info, metrics, etc.)

• render(): Visualizes the current state

• close(): Closes the environment and frees resources

6.5 Wrappers

Gym wrappers allow modifying the behavior of environments:

Types of wrappers:

• ObservationWrapper: Modifies observations

• RewardWrapper: Modifies rewards

• ActionWrapper: Modifies actions

• Wrapper: Generic wrapper that can modify all aspects

Example of using wrappers:

# Normalize observations to range [0,1]

from gym.wrappers import NormalizeObservation

env = gym.make(’CartPole-v1’)

env = NormalizeObservation(env)

# Time limit wrapper

from gym.wrappers import TimeLimit

env = TimeLimit(env, max_episode_steps=1000)

16



7 Practical Examples

7.1 CartPole Environment

Environment Description:

• A pole is attached to a cart moving along a frictionless track

• The goal is to balance the pole by applying forces to the cart

• The episode ends when the pole falls too far from vertical or the cart moves too far
from center

Force left Force right

Pole

Cart

Figure 9: CartPole Environment

State Space (Observation):

• Cart Position: [−4.8, 4.8]

• Cart Velocity: [−∞,∞]

• Pole Angle: [−24, 24]

• Pole Angular Velocity: [−∞,∞]

Action Space:

• 0: Push cart to the left

• 1: Push cart to the right

Reward:

• +1 for every timestep the pole remains upright

Episode Termination:

• Pole angle exceeds ±12 degrees

• Cart position exceeds ±2.4 units from center

• Episode length exceeds 500 timesteps

Example Q-learning Implementation:
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import gym

import numpy as np

# Create environment

env = gym.make(’CartPole-v1’)

# Discretize the continuous state space

def discretize_state(state):

# Define bins for each state dimension

cart_pos_bins = np.linspace(-2.4, 2.4, 10)

cart_vel_bins = np.linspace(-4, 4, 10)

pole_ang_bins = np.linspace(-0.2094, 0.2094, 10) # ~12 degrees

pole_vel_bins = np.linspace(-4, 4, 10)

# Digitize state to get bin indices

discretized = [

np.digitize(state[0], cart_pos_bins),

np.digitize(state[1], cart_vel_bins),

np.digitize(state[2], pole_ang_bins),

np.digitize(state[3], pole_vel_bins)

]

return tuple(discretized)

# Q-learning parameters

alpha = 0.1 # Learning rate

gamma = 0.99 # Discount factor

epsilon = 1.0 # Exploration rate

epsilon_min = 0.01

epsilon_decay = 0.995

# Initialize Q-table

q_table = {}

# Training

num_episodes = 1000

for episode in range(num_episodes):

state = env.reset()

state = discretize_state(state)

done = False

total_reward = 0

while not done:

# Epsilon-greedy action selection

if state not in q_table:

q_table[state] = [0, 0] # Initialize Q-values for new state

if np.random.random() < epsilon:

action = env.action_space.sample() # Explore

18



else:

action = np.argmax(q_table[state]) # Exploit

# Take action

next_state, reward, done, _ = env.step(action)

next_state = discretize_state(next_state)

total_reward += reward

# Q-learning update

if next_state not in q_table:

q_table[next_state] = [0, 0]

best_next_action = np.argmax(q_table[next_state])

td_target = reward + gamma * q_table[next_state][best_next

best_next_action = np.argmax(q_table[next_state])

td_target = reward + gamma * q_table[next_state][best_next_action]

td_error = td_target - q_table[state][action]

q_table[state][action] += alpha * td_error

# Move to next state

state = next_state

# Decay epsilon

epsilon = max(epsilon_min, epsilon * epsilon_decay)

# Print episode results

if (episode + 1) % 100 == 0:

print(f"Episode: {episode+1}, Total Reward: {total_reward}, Epsilon: {epsilon:.2f}")

7.2 Mountain Car Environment

Environment Description:

• A car is positioned between two mountains

• The goal is to drive the car up the right mountain

• The car’s engine is not strong enough to climb the mountain directly

• The agent must learn to build momentum by moving back and forth

State Space (Observation):

• Position: [−1.2, 0.6]

• Velocity: [−0.07, 0.07]

Action Space:

• 0: Push left

19



Push left Push rightNo action

Goal

Figure 10: Mountain Car Environment

• 1: No push

• 2: Push right

Reward:

• -1 for each time step until goal reached

• This encourages the agent to reach the goal as quickly as possible

Episode Termination:

• Car position reaches the goal position of 0.5

• Maximum of 200 time steps reached

Example SARSA Implementation:

import gym

import numpy as np

import matplotlib.pyplot as plt

# Create environment

env = gym.make(’MountainCar-v0’)

# Discretize the continuous state space

def discretize_state(state):

pos_bins = np.linspace(-1.2, 0.6, 20)

vel_bins = np.linspace(-0.07, 0.07, 20)

discretized = [

np.digitize(state[0], pos_bins),

np.digitize(state[1], vel_bins)

]

return tuple(discretized)

# SARSA parameters

alpha = 0.2

gamma = 0.99

epsilon = 1.0

epsilon_min = 0.01

20



epsilon_decay = 0.9995

# Initialize Q-table

q_table = {}

# Training

num_episodes = 2000

rewards_history = []

for episode in range(num_episodes):

state = env.reset()

state = discretize_state(state)

# Initialize action using epsilon-greedy

if state not in q_table:

q_table[state] = [0, 0, 0]

if np.random.random() < epsilon:

action = env.action_space.sample()

else:

action = np.argmax(q_table[state])

done = False

total_reward = 0

while not done:

# Take action

next_state, reward, done, _ = env.step(action)

next_state = discretize_state(next_state)

total_reward += reward

# Choose next action using epsilon-greedy

if next_state not in q_table:

q_table[next_state] = [0, 0, 0]

if np.random.random() < epsilon:

next_action = env.action_space.sample()

else:

next_action = np.argmax(q_table[next_state])

# SARSA update (on-policy)

q_table[state][action] += alpha * (

reward + gamma * q_table[next_state][next_action] - q_table[state][action]

)

# Move to next state and action

state = next_state

action = next_action

21



# Decay epsilon

epsilon = max(epsilon_min, epsilon * epsilon_decay)

# Store rewards for plotting

rewards_history.append(total_reward)

# Print episode results

if (episode + 1) % 100 == 0:

avg_reward = np.mean(rewards_history[-100:])

print(f"Episode: {episode+1}, Avg Reward (last 100): {avg_reward:.2f}, Epsilon: {epsilon:.2f}")

# Plot training progress

plt.figure(figsize=(10, 5))

plt.plot(rewards_history)

plt.title(’Rewards per Episode’)

plt.xlabel(’Episode’)

plt.ylabel(’Total Reward’)

plt.grid(True)

plt.savefig(’mountain_car_training.png’)

plt.close()

7.3 Atari Games

OpenAI Gym also provides environments for classic Atari 2600 games through the Atari
Learning Environment (ALE).

Available Games:

• Pong, Breakout, Space Invaders, Enduro, etc.

• Different versions exist with frame skipping, reward clipping, etc.

State Space:

• RGB image of the game screen (210x160x3)

• Often preprocessed (grayscale, resizing, frame stacking)

Action Space:

• Discrete set of possible controller actions

• Typically contains 4-18 actions depending on the game

Deep Q-Network (DQN) Architecture for Atari:

Input84x84x4 Conv132 filters8x8 stride 4 Conv264 filters4x4 stride 2 Conv364 filters3x3 stride 1 FC512 units Outputactions

Figure 11: DQN Architecture for Atari Games

Key Innovations in DQN:
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• Experience Replay: Stores experience tuples (s, a, r, s′) in a replay buffer and
samples random batches for learning

• Target Network: Separate network for generating targets in Q-learning, updated
periodically

• Frame Stacking: Uses multiple consecutive frames as input to capture motion

• Reward Clipping: Clips rewards to {−1, 0,+1} to handle different reward scales
across games
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8 Concepts in Reinforcement Learning

8.1 Episodes

An episode is a complete sequence of interaction from an initial state to a terminal state.

Key points about episodes:

• Has a defined starting state and ending condition

• Finite in length

• Provides a natural way to segment experience

• Used to compute returns and update policies/values

Episodes are particularly important in episodic tasks, where there’s a natural notion
of a final state (like winning a game or reaching a goal). In contrast, continuing tasks
have no natural endpoint and continue indefinitely.

8.2 State Spaces

The state space is the set of all possible states the environment can be in.

Types of state spaces:

• Discrete state spaces: Finite number of states (e.g., chess positions)

• Continuous state spaces: Infinite number of states (e.g., robot joint angles)

• Low-dimensional: Few state variables (e.g., CartPole with 4 dimensions)

• High-dimensional: Many state variables (e.g., image observations)

• Fully observable: Agent sees complete state

• Partially observable: Agent sees only part of the state

Discrete Continuous

Figure 12: Discrete vs. Continuous State Spaces

8.3 Reward Design

Designing appropriate reward functions is crucial for successful reinforcement learning.
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Principles of good reward design:

• Alignment: Rewards should align with the actual goals

• Sparsity vs. Density:

– Sparse: Rewards only at completion (easier to specify but harder to learn)

– Dense: Frequent intermediate rewards (easier to learn but may cause
suboptimal behavior)

• Shaped Rewards: Adding intermediate rewards to guide learning

• Avoiding Reward Hacking: Preventing agents from exploiting reward func-
tions

Examples of reward functions:

• Simple goal achievement: r = 1 for reaching goal, r = 0 otherwise

• Time penalty: r = −0.1 per step + r = 1 for goal

• Distance-based shaping: r = −distance to goal

• Progress-based: r = current progress− previous progress

8.4 Markov Property

The Markov property is a fundamental concept in reinforcement learning.

Definition: A state has the Markov property if the future depends only on the
current state and not on the history of how the agent arrived at that state.
Mathematically, for states s and s′, actions a, and rewards r:

P (s′, r|s, a, st−1, at−1, . . . , s0, a0) = P (s′, r|s, a) (3)

Implications of the Markov property:

• State contains all relevant information for decision making

• Past history can be discarded once state is known

• Forms the basis for Markov Decision Processes (MDPs)

• Simplifies learning and decision making

When the Markov property doesn’t hold (partially observable environments), agents
often need to use history or build internal models.
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9 Challenges in Reinforcement Learning

9.1 Delayed Rewards

One of the fundamental challenges in reinforcement learning is that rewards may be
delayed, making it difficult to identify which actions led to success.

Credit assignment problem: Determining which actions in a sequence con-
tributed to the eventual reward.
Approaches to address delayed rewards:

• Temporal Difference Learning: Updates estimates based on subsequent
estimates

• Eligibility Traces: Keeps track of recently visited states/actions

• Reward Shaping: Adding intermediate rewards

• Hierarchical RL: Breaking tasks into subtasks with shorter reward horizons

s0 s1 s2 s3 s4
a0, r = 0 a1, r = 0 a2, r = 0 a3, r = +10

Figure 13: Delayed Reward Example: Only the final transition yields a reward

9.2 Continuous vs. Discrete Action Spaces

Discrete action spaces:

• Finite set of possible actions

• Can be handled by value-based methods (e.g., Q-learning, DQN)

• Easier to explore exhaustively

• Examples: Game moves, direction choices

Continuous action spaces:

• Infinite set of possible actions (real-valued)

• Requires policy-based or actor-critic methods (e.g., DDPG, SAC, PPO)

• Exploration is more complex

• Examples: Joint torques, steering angles

Approaches for handling continuous action spaces:

• Discretization: Divide continuous space into bins

• Policy gradient methods: Learn a parametrized policy directly
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• Actor-critic with deterministic policies: DDPG, TD3

• Actor-critic with stochastic policies: SAC, PPO

9.3 Partial Observability

In many real-world scenarios, the agent doesn’t have access to the complete state of the
environment.

Partially Observable Markov Decision Process (POMDP):

• Agent receives observations that don’t fully capture the state

• Example: Robot with limited sensors, poker with hidden cards

• The true state is hidden, making optimal decisions harder

Approaches for handling partial observability:

• Recurrent policies: Using RNNs (LSTM, GRU) to maintain internal state

• History-based methods: Including past observations in the state

• Belief state methods: Maintaining a probability distribution over possible
states

• State estimation techniques: Kalman filters, particle filters

True State Space

Observations

Hidden state

Agent

Figure 14: Partial Observability: Agent cannot directly observe all aspects of the true
state

10 Conclusion

Reinforcement learning is a powerful machine learning paradigm for solving sequential
decision-making problems. This document covered:
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• The fundamentals of reinforcement learning

• Key components (agent, environment, state, action, reward, policy)

• Types of RL algorithms

• OpenAI Gym for practical implementations

• Advanced concepts and challenges

The field continues to advance rapidly with new algorithms, applications, and inte-
gration with other machine learning techniques. As computational power increases and
algorithms improve, reinforcement learning will likely play an increasingly important role
in developing intelligent systems that can make optimal decisions in complex, uncertain
environments.
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