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Diagnosing Disease with Limited Expert Annotations

Imagine a hospital radiology department in a bustling urban city. Every day, hundreds of MRI scans ar-
rive—scans of the brain, spine, and other critical organs. These images hold life-changing insights—evidence
of tumors, lesions, strokes—but understanding them correctly requires the expertise of seasoned radiol-
ogists.

Unfortunately, there are only a few radiologists available, and their time is stretched thin across
surgery planning, urgent diagnosis, and patient consultations. Out of the 60,000 scans collected over a
few months, only about 500 could be meticulously labeled by the experts, identifying whether each scan
indicates a healthy or abnormal condition.

Despite having so little labeled data, the hospital’s data science team wants to build a deep learning
model that can automatically screen incoming scans. Training a supervised model with just 500 labeled
examples will almost certainly result in underfitting. However, discarding the remaining 59,500 unlabeled
scans—filled with potentially rich patterns—seems like a waste.

This is where Semi-Supervised Learning (SSL) comes in.
SSL methods bridge the gap between limited expert-labeled data and abundant unlabeled data. By

combining the strengths of both supervised and unsupervised learning, SSL enables the model to learn
not just from what has been labeled, but also from the structure and distribution of the vast pool of
unlabeled data.

As we proceed through this notebook, we will explore how SSL algorithms—like ladder networks, the
Pi model, self-training, co-training, and VAE-based classifiers—can extract knowledge from unlabeled
samples and build robust, accurate models even in resource-constrained settings. Just like in our hospital
scenario, SSL has the power to make high-quality learning accessible, efficient, and scalable in real-world
challenges.
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Semi-Supervised Learning (SSL)

Semi-supervised learning (SSL) is a machine learning paradigm that seeks to improve model performance
by leveraging both a small amount of labeled data and a large pool of unlabeled data. This is particularly
useful in real-world scenarios where obtaining labels is expensive, time-consuming, or requires domain
expertise, such as in medical image analysis, legal document classification, or speech recognition. A
common example is the classification of MRI scans: medical professionals may label a small subset of
images due to the expertise required, while the remaining scans, although unannotated, can still be
valuable in training a robust model using SSL techniques.

Core Assumptions in SSL

SSL methods generally rely on a few fundamental assumptions about the structure of the data to effec-
tively leverage unlabeled information:

Smoothness Assumption: This implies that if two points in a high-dimensional space are close
to each other, then their corresponding labels should also be similar. This assumption underpins most
neighborhood-based algorithms in SSL.

Cluster Assumption: According to this, the data naturally forms clusters, and points that are
within the same cluster are likely to belong to the same class. This is used to propagate labels through
the data graph in methods like label propagation.

Manifold Assumption: Real-world high-dimensional data often lies on a much lower-dimensional
manifold. If the manifold structure can be identified, the model can generalize well even from a small
number of labeled examples.

Ladder Network

The ladder network is a deep learning architecture designed to incorporate both supervised and unsuper-
vised learning signals. It does so by combining a standard feedforward network (encoder) with a decoder
that reconstructs intermediate representations at each layer. The key idea is not just to get the final
prediction right but to ensure that the network learns meaningful features at all layers.

The encoder first takes the input data and adds Gaussian noise to simulate perturbations. As the
data passes through the network, it generates a sequence of noisy intermediate outputs (activations).
The decoder then attempts to reconstruct the original (clean) intermediate representations using these
noisy ones.

The training objective includes two types of loss: a supervised loss, typically a cross-entropy loss
computed using the model’s output and the true labels for the small labeled dataset, and a reconstruc-
tion loss, which is a mean squared error computed between the clean and reconstructed intermediate
representations. The total loss is a weighted sum of these two components.

This architecture is especially powerful for image classification tasks where features extracted at
various layers carry rich hierarchical representations.

Pi Model

The Pi model, short for π-model, is based on the principle of consistency regularization. The model
encourages similar outputs (predictions) for the same input under different perturbations. This enforces
that the model is robust to slight changes or noise in the input.

In practice, two different noise samples are added to the same input image, resulting in two different
versions of it. These perturbed inputs are passed through the same model, and the output predictions
are compared. Since the true label for the input is unknown (unlabeled data), we cannot use standard
supervised loss. Instead, we use a mean squared error (MSE) loss between the softmax outputs of the
two predictions.

If the input is labeled, standard cross-entropy is computed using the ground truth. The final loss
function is a combination of the supervised loss and the unsupervised MSE loss. This forces the model
to be confident and consistent in its predictions across noisy versions of the same input.
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Self-Training (Pseudo-Labeling)

Self-training is one of the simplest yet effective semi-supervised learning strategies. The central idea is
to iteratively improve the model by using its own high-confidence predictions as ground truth labels for
unlabeled data.

Initially, a classifier is trained using the small set of labeled data. This classifier is then used to
predict labels for the unlabeled data. From these predictions, only those with a confidence score above
a specified threshold (e.g., 95%) are selected. These high-confidence predictions are treated as pseudo-
labels, and the corresponding data points are added to the labeled dataset. The model is then retrained
using this expanded dataset.

This process is repeated over several iterations. Over time, the model becomes more confident and
starts labeling more data correctly. However, care must be taken as poor pseudo-labels early on can
mislead the training process. It is crucial to use a well-calibrated confidence threshold to mitigate noise
in pseudo-labels.

Co-Training

Co-training is another classical SSL approach, especially useful when data can be represented in multiple
independent feature spaces or “views.” The key idea is that two classifiers are trained separately on
different views of the same data, and they iteratively help each other by labeling examples for one
another.

For example, consider image data. If the image can be split horizontally into two halves, the left
half can be used to train one model and the right half to train another. These two models are trained
using the small labeled dataset. Then, each model is used to label the unlabeled data, but only those
predictions that are made with high confidence are retained. These pseudo-labeled samples are added
to the training set of the opposite model.

This mutual teaching continues iteratively. The assumption here is that the views are conditionally
independent given the label and that both views are sufficient to predict the label. Co-training works
well when each view alone is a strong predictor.

Dropout as Regularization

Dropout is a widely used regularization technique to prevent overfitting in deep neural networks. The
idea is simple: during training, randomly set a fraction of the neural network’s activations to zero. This
prevents the network from becoming overly reliant on specific neurons and promotes redundancy in
feature learning.

By using dropout, a neural network effectively trains an ensemble of subnetworks. During inference,
all units are used, and their outputs are scaled accordingly to account for the missing units during
training.

In SSL settings, dropout can help models better generalize from a small labeled dataset by preventing
co-adaptation of features and making the model robust to missing information.

Applications to NLP

While SSL is most often used in vision-related tasks, it can also be adapted for use in natural language
processing (NLP). However, since many NLP tasks are already structured in a way that facilitates
self-supervision (e.g., masked language modeling in BERT), the need for traditional SSL is somewhat
reduced.

Still, SSL can be employed in NLP by using word embeddings or sentence embeddings as input
representations and then applying noise (e.g., word dropout, synonym replacement, etc.) to simulate
perturbations. The idea is similar to SSL in vision: force the model to remain consistent in its predictions
regardless of small input changes. Moreover, reconstruction losses can be defined at the embedding level
instead of pixel level, and consistency losses can be based on cosine similarity or MSE between semantic
vectors.
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Coding Portion

Step 1: Data Preparation

1 # Transform: Normalize MNIST images

2 transform = transforms.Compose ([

3 transforms.ToTensor (),

4 transforms.Normalize ((0.1307 ,) , (0.3081 ,))

5 ])

This code creates a transformation pipeline. ‘ToTensor()‘ converts the images into PyTorch tensors, and
‘Normalize((0.1307,), (0.3081,))‘ normalizes them using the mean and standard deviation of the MNIST
dataset.

1 # Load full MNIST dataset

2 train_dataset = datasets.MNIST(’./data’, train=True , download=True , transform=transform)

3 test_dataset = datasets.MNIST(’./data’, train=False , transform=transform)

This loads the training and test datasets from torchvision. The training dataset downloads MNIST and
applies the transform.

1 # Create labeled subset (e.g., 100 examples evenly distributed across classes)

2 num_labels = 100

3 labels = np.array(train_dataset.targets)

4 labeled_idx = []

5

6 for i in range (10):

7 idx = np.where(labels == i)[0][: num_labels // 10]

8 labeled_idx.extend(idx)

Here, we pick 100 labeled examples, 10 per digit (0-9), for a balanced labeled dataset. We use numpy to
extract index positions per digit.

1 unlabeled_idx = list(set(range(len(train_dataset))) - set(labeled_idx))

This determines the indices of all the unlabeled data, i.e., the remaining data after the labeled samples.

1 labeled_dataset = Subset(train_dataset , labeled_idx)

2 unlabeled_dataset = Subset(train_dataset , unlabeled_idx)

Create subsets using PyTorch’s ‘Subset‘ to separate labeled and unlabeled data.

1 labeled_loader = DataLoader(labeled_dataset , batch_size =64, shuffle=True)

2 unlabeled_loader = DataLoader(unlabeled_dataset , batch_size =128, shuffle=True)

3 test_loader = DataLoader(test_dataset , batch_size =256, shuffle=False)

Set up data loaders for training and testing. The labeled loader uses a smaller batch size due to fewer
examples.

Gaussian Noise Layer

1 class GaussianNoise(nn.Module):

2 def __init__(self , stddev):

3 super().__init__ ()

4 self.stddev = stddev

5 def forward(self , x):

6 if self.training:

7 noise = torch.randn_like(x) * self.stddev

8 return x + noise

9 else:

10 return x

This class defines a custom module that adds Gaussian noise to the input during training to simulate
corruption. ‘torch.randnlike(x)‘generatesnoisewiththesameshapeas‘x‘.

4



Encoder and Decoder

1 class Encoder(nn.Module):

2 def __init__(self , noise_std):

3 super().__init__ ()

4 self.noise = GaussianNoise(noise_std)

5 self.fc1 = nn.Linear (784, 1000)

6 self.fc2 = nn.Linear (1000 , 500)

7 self.fc3 = nn.Linear (500, 250)

8 self.fc4 = nn.Linear (250, 250)

9 self.fc5 = nn.Linear (250, 10)

The encoder is a feedforward neural network with 5 fully connected layers. It starts with input of size
784 (flattened MNIST image) and gradually reduces dimensionality to 10.

1 def forward(self , x):

2 z = []

3 x = x.view(-1, 784)

4 x = self.noise(x)

5 z1 = self.fc1(x)

6 z.append(z1)

7 z2 = self.fc2(F.relu(z1))

8 z.append(z2)

9 z3 = self.fc3(F.relu(z2))

10 z.append(z3)

11 z4 = self.fc4(F.relu(z3))

12 z.append(z4)

13 z5 = self.fc5(F.relu(z4))

14 z.append(z5)

15 return z

The forward pass adds noise to the input, then passes it through each layer with ReLU activations. It
stores each intermediate representation (‘z1‘ to ‘z5‘).

1 class Decoder(nn.Module):

2 def __init__(self):

3 super().__init__ ()

4 self.fc1 = nn.Linear (10, 250)

5 self.fc2 = nn.Linear (250, 250)

6 self.fc3 = nn.Linear (250, 500)

7 self.fc4 = nn.Linear (500, 1000)

The decoder mirrors the encoder in reverse. Its goal is to reconstruct the internal representations from
the topmost layer.

1 def forward(self , z_corr):

2 d1 = self.fc1(z_corr [-1])

3 d2 = self.fc2(F.relu(d1))

4 d3 = self.fc3(F.relu(d2))

5 d4 = self.fc4(F.relu(d3))

6 return [d4 , d3 , d2, d1]

Takes in the final noisy representation (‘z5‘) and tries to reconstruct the previous layers in reverse order.

Loss Functions and Training

1 def supervised_loss(output , target):

2 return F.cross_entropy(output , target)

The standard cross-entropy loss for classification of labeled data.

1 def reconstruction_loss(z_clean , z_recon):

2 loss = 0

3 for zc, zr in zip(z_clean [:4], z_recon):

4 loss += F.mse_loss(zr, zc.detach ())

5 return loss

This unsupervised loss is based on Mean Squared Error between clean and reconstructed intermediate
layers (except the final one).
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Training One Epoch

1 def train_epoch(encoder , decoder , optimizer , labeled_loader , unlabeled_loader , alpha):

2 encoder.train ()

3 decoder.train ()

4 for (x_l , y_l), (x_u , _) in zip(labeled_loader , unlabeled_loader):

5 x_l , y_l = x_l.to(device), y_l.to(device)

6 x_u = x_u.to(device)

This function trains both the encoder and decoder for one epoch. It fetches batches from both labeled
and unlabeled loaders.

1 z_corr_l = encoder(x_l)

2 z_clean_l = encoder(x_l)

3 z_corr_u = encoder(x_u)

4 z_clean_u = encoder(x_u)

It performs both noisy (corrupted) and clean passes through the encoder for both labeled and unlabeled
data.

1 output = z_corr_l [-1]

2 loss_sup = supervised_loss(output , y_l)

It uses the final noisy output to calculate supervised classification loss.

1 recon_l = decoder(z_corr_l)

2 recon_u = decoder(z_corr_u)

3 loss_unsup = reconstruction_loss(z_clean_l , recon_l) + reconstruction_loss(

z_clean_u , recon_u)

Decodes the noisy activations and compares them to the clean versions using reconstruction loss for both
labeled and unlabeled inputs.

1 loss = loss_sup + alpha * loss_unsup

2 optimizer.zero_grad ()

3 loss.backward ()

4 optimizer.step()

Combines both losses into the total loss, then runs the backward pass and updates model parameters.

Evaluation

1 def evaluate(encoder , loader):

2 encoder.eval()

3 correct = 0

4 with torch.no_grad ():

5 for x, y in loader:

6 x, y = x.to(device), y.to(device)

7 output = encoder(x)[-1]

8 pred = output.argmax(dim=1)

9 correct += (pred == y).sum().item()

10 return correct / len(loader.dataset)

This function evaluates classification accuracy on a data loader. It disables gradient calculation for
efficiency.

Training Loop

1 encoder = Encoder(noise_std =0.3).to(device)

2 decoder = Decoder ().to(device)

3 optimizer = optim.Adam(list(encoder.parameters ()) + list(decoder.parameters ()), lr=1e-3)

4

5 epochs = 30

6 alpha = 0.5

7

8 for epoch in range(1, epochs + 1):

9 train_epoch(encoder , decoder , optimizer , labeled_loader , unlabeled_loader , alpha)
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10 test_acc = evaluate(encoder , test_loader)

11 labeled_acc = evaluate(encoder , labeled_loader)

12 unlabeled_acc = evaluate(encoder , DataLoader(unlabeled_dataset , batch_size =256))

13 print(f"Epoch␣{epoch :02d}␣|␣Test␣Acc:␣{test_acc :.4f}␣|␣Labeled␣Acc:␣{labeled_acc :.4f

}␣|␣Unlabeled␣Pseudo␣Acc:␣{unlabeled_acc :.4f}")

Finally, this block trains the model over 30 epochs and prints test, labeled, and pseudo-labeled accuracies.

VAE-based Semi-Supervised Learning (SSL)

This section of the code implements a VAE (Variational Autoencoder)-based semi-supervised learning
(SSL) approach for the MNIST dataset using PyTorch. The key idea is to use both labeled and unlabeled
data to learn a latent representation that not only helps reconstruct input data but also classifies digits
accurately. The entire workflow is broken down into steps for clarity.

Step 1: Data Preparation

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 import torch.optim as optim

5 from torch.utils.data import DataLoader , Subset

6 import numpy as np

7 from torchvision import datasets , transforms

8

9 # Setup

10 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

11 torch.manual_seed (0)

12

13 dataset = datasets.MNIST(’./data’, train=True , download=True , transform=transform)

14

15 def split_labeled_unlabeled(dataset , num_labels =100):

16 targets = np.array(dataset.targets)

17 labeled_idx = []

18 for i in range (10):

19 idx = np.where(targets == i)[0][: num_labels // 10]

20 labeled_idx.extend(idx)

21 unlabeled_idx = list(set(range(len(dataset))) - set(labeled_idx))

22 return Subset(dataset , labeled_idx), Subset(dataset , unlabeled_idx)

23

24 test_dataset = datasets.MNIST(’./data’, train=False , transform=transform)

25 labeled_dataset , unlabeled_dataset = split_labeled_unlabeled(train_dataset)

26 labeled_loader = DataLoader(labeled_dataset , batch_size =64, shuffle=True)

27 unlabeled_loader = DataLoader(unlabeled_dataset , batch_size =128, shuffle=True)

28 test_loader = DataLoader(test_dataset , batch_size =256, shuffle=False)

We begin by importing necessary libraries. The MNIST dataset is loaded and split into a small
labeled set (100 examples, 10 per class) and a large unlabeled set. These subsets are wrapped in PyTorch
DataLoaders.

Step 2: VAE Components and Classifier

1 def one_hot(y, num_classes =10):

2 return F.one_hot(y, num_classes=num_classes).float()

Defines a helper function to convert class labels into one-hot encoded vectors.

1 class Encoder(nn.Module):

2 def __init__(self , latent_dim =20, n_classes =10):

3 super().__init__ ()

4 self.fc1 = nn.Linear (784 + n_classes , 400)

5 self.fc_mu = nn.Linear (400, latent_dim)

6 self.fc_logvar = nn.Linear (400, latent_dim)

7

8 def forward(self , x, y):

9 xy = torch.cat([x, y], dim =1)

10 h = F.relu(self.fc1(xy))

11 return self.fc_mu(h), self.fc_logvar(h)
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The encoder takes both input image and class label (in one-hot form) and outputs the mean and
log-variance for the latent space. The label conditioning enables class-specific latent representations.

1 class Decoder(nn.Module):

2 def __init__(self , latent_dim =20, n_classes =10):

3 super().__init__ ()

4 self.fc1 = nn.Linear(latent_dim + n_classes , 400)

5 self.fc2 = nn.Linear (400, 784)

6

7 def forward(self , z, y):

8 zy = torch.cat([z, y], dim =1)

9 h = F.relu(self.fc1(zy))

10 return torch.sigmoid(self.fc2(h))

The decoder reconstructs the input from latent vector ‘z‘ and the one-hot label ‘y‘.

1 class Classifier(nn.Module):

2 def __init__(self):

3 super().__init__ ()

4 self.fc = nn.Linear (784, 10)

5

6 def forward(self , x):

7 return F.log_softmax(self.fc(x), dim=1)

A simple classifier maps input images to class probabilities using a single linear layer followed by
log-softmax.

Step 3: VAE-SSL Model

1 def kl_divergence(mu, logvar):

2 return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim =1)

3

4 def reconstruction_loss(x_recon , x_true):

5 x_recon = torch.clamp(x_recon , 1e-6, 1 - 1e-6)

6 x_true = torch.clamp(x_true , 0, 1)

7 assert x_recon.shape == x_true.shape

8 return F.binary_cross_entropy(x_recon , x_true , reduction=’none’).sum(dim=1)

These functions compute VAE loss components: KL divergence and reconstruction loss. Clamping is
used for numerical stability.

1 class VAESSL(nn.Module):

2 def __init__(self , latent_dim =20, n_classes =10):

3 super().__init__ ()

4 self.encoder = Encoder(latent_dim , n_classes)

5 self.decoder = Decoder(latent_dim , n_classes)

6 self.classifier = Classifier ()

7 self.n_classes = n_classes

8 self.latent_dim = latent_dim

Initializes the complete semi-supervised VAE with encoder, decoder, and classifier.

1 def forward_labeled(self , x, y):

2 mu, logvar = self.encoder(x, y)

3 std = torch.exp (0.5 * logvar)

4 z = mu + std * torch.randn_like(std)

5 x_recon = self.decoder(z, y)

6 return x_recon , mu , logvar

Generates latent vector ‘z‘ using the reparameterization trick and reconstructs the input for labeled
data.

1 def forward_unlabeled(self , x):

2 log_probs = self.classifier(x)

3 probs = log_probs.exp()

4 total_loss = 0

5 for i in range(self.n_classes):

6 y_i = torch.eye(self.n_classes)[i]. repeat(x.size (0), 1).to(device)

7 mu, logvar = self.encoder(x, y_i)

8 std = torch.exp (0.5 * logvar)

9 z = mu + std * torch.randn_like(std)
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10 x_recon = self.decoder(z, y_i)

11 recon = reconstruction_loss(x_recon , x)

12 kl = kl_divergence(mu, logvar)

13 elbo = recon + kl - log_probs [:, i]

14 total_loss += probs[:, i] * elbo

15 return total_loss.mean()

For unlabeled data, the model evaluates the expected reconstruction and KL divergence losses over
all possible class labels (weighted by predicted probabilities).

Step 4: Training and Evaluation

1 model = VAESSL ().to(device)

2 optimizer = optim.Adam(model.parameters (), lr=1e-3)

Creates the model and optimizer.

1 def train_epoch(model , labeled_loader , unlabeled_loader , alpha =0.1, beta =1.0):

2 model.train ()

3 total_labeled_loss = 0

4 total_unlabeled_loss = 0

5

6 for (x_l , y_l), (x_u , _) in zip(labeled_loader , unlabeled_loader):

7 x_l = x_l.view(-1, 784).to(device)

8 x_u = x_u.view(-1, 784).to(device)

9 y_l = y_l.to(device)

10 y_l_1h = one_hot(y_l).to(device)

11

12 x_recon , mu, logvar = model.forward_labeled(x_l , y_l_1h)

13 recon_loss = reconstruction_loss(x_recon , x_l)

14 kl_loss = kl_divergence(mu, logvar)

15 labeled_vae_loss = (recon_loss + kl_loss).mean()

16

17 class_pred = model.classifier(x_l)

18 class_loss = F.nll_loss(class_pred , y_l)

19

20 unlabeled_loss = model.forward_unlabeled(x_u)

21

22 loss = labeled_vae_loss + alpha * unlabeled_loss + beta * class_loss

23

24 optimizer.zero_grad ()

25 loss.backward ()

26 optimizer.step()

27

28 total_labeled_loss += (labeled_vae_loss + beta * class_loss).item()

29 total_unlabeled_loss += unlabeled_loss.item()

30

31 return total_labeled_loss , total_unlabeled_loss

This function trains the model for one epoch. It computes labeled VAE loss, supervised classification
loss, and unsupervised loss, then backpropagates the total loss.

1 def evaluate_classifier(model , loader):

2 model.eval()

3 correct = 0

4 with torch.no_grad ():

5 for x, y in loader:

6 x = x.view(-1, 784).to(device)

7 y = y.to(device)

8 pred = model.classifier(x).argmax (1)

9 correct += (pred == y).sum().item()

10 return correct / len(loader.dataset)

Evaluates classifier accuracy.

Step 5: Training Loop

1 for epoch in range(1, 21):

2 l_loss , u_loss = train_epoch(model , labeled_loader , unlabeled_loader , alpha =0.1)

3 acc = evaluate_classifier(model , test_loader)
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4 print(f"Epoch␣{epoch :02d}␣|␣Test␣Accuracy:␣{acc:.4f}␣|␣Labeled␣Loss:␣{l_loss :.2f}␣|␣

Unlabeled␣Loss:␣{u_loss :.2f}")

Trains the model for 20 epochs and prints out test accuracy, labeled loss, and unlabeled loss.

Key Takeaways

• Semi-Supervised Learning (SSL) bridges the gap between limited labeled data and abundant
unlabeled data, making it especially valuable in domains like healthcare where annotations are
expensive.

• The ladder network combines supervised and unsupervised losses by adding noise to inputs and
reconstructing intermediate representations, ensuring the model learns robust features across all
layers.

• The π-model introduces the concept of consistency regularization, where the model is trained to
make consistent predictions for the same input under different noise conditions.

• Self-training uses the model’s own high-confidence predictions as pseudo-labels to iteratively
expand the labeled dataset and improve generalization.

• Co-training leverages multiple independent views of the data, where two models teach each other
by labeling examples for their counterpart, resulting in mutual improvement.

• Dropout serves as an essential regularization method to prevent overfitting, especially when labeled
data is scarce.

• The VAE-SSL model integrates a variational autoencoder (VAE) with classification, utilizing
class-conditional latent variables for improved reconstruction and classification performance on
both labeled and unlabeled data.

• Loss components in VAE-SSL include:

– Reconstruction loss (binary cross-entropy) to measure how well inputs are reconstructed.

– KL-divergence to regularize the latent space.

– Classification loss (cross-entropy) for supervised learning on labeled data.

• The combined training objective allows the model to benefit from both labeled and unlabeled
examples, improving performance with minimal labeled supervision.

• Practical implementation requires careful balancing of supervised and unsupervised losses using
hyperparameters like α and β.
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