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Introduction

In this document, we will break down a deep learning code used for Natural Language Processing (NLP).
The code primarily focuses on building a Recurrent Neural Network (RNN), including LSTMs and GRUs,
to predict the next word in a sequence, generate Word2Vec embeddings.

Deep RNN for Next-Word Prediction

We start by defining a basic Deep Recurrent Neural Network (RNN) model for predicting the next word
in a sequence. The core of the model consists of three main components:

• Embedding Layer: Converts word indices into dense vector representations (embeddings).

• RNN Layer: Processes the word embeddings sequentially and generates hidden states for each
time step.

• Fully Connected Layer: Maps the final hidden state to the vocabulary space, predicting the
next word.

Defining the Deep RNN Class

1 class DeepRnn(nn.Module):

2 def __init__(self , vocab_size , embed_dim , hidden_dim , num_layers):

3 super(DeepRnn , self).__init__ ()

4 self.embeddings = nn.Embedding(vocab_size , embed_dim) # Embedding layer

5 self.rnn = nn.RNN(embed_dim , hidden_dim , num_layers , batch_first=True) # RNN

layer

6 self.fc = nn.Linear(hidden_dim , vocab_size) # Fully connected layer for

prediction

The init method initializes the model and defines the following layers:

• nn.Embedding(vocab size, embed dim): This embedding layer transforms word indices (from the
vocabulary) into dense vectors (word embeddings) of size embed dim.

• nn.RNN(embed dim, hidden dim, num layers, batch first=True): The RNN layer processes
the input sequence of word embeddings, capturing temporal dependencies. It outputs hidden
states at each time step. The number of layers (num layers) and the size of the hidden state
(hidden dim) are configurable.

• nn.Linear(hidden dim, vocab size): A fully connected layer that projects the hidden state from
the RNN into a vector of size vocab size, representing the logits for each word in the vocabulary.
This layer is used for prediction.

Forward Pass

1 def forward(self , x):

2 embeddings = self.embeddings(x) # Embedding layer

3 output , hidden = self.rnn(embeddings) # RNN layer

4 output = self.fc(output[:, -1, :]) # Fully connected layer

5 return output
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• self.embeddings(x): The input word indices are passed through the embedding layer, transform-
ing them into dense word vectors (embeddings).

• self.rnn(embeddings): The word embeddings are processed through the RNN layer, generating
hidden states for each time step in the sequence.

• self.fc(output[:, -1, :]): The last hidden state of the RNN (after processing the entire se-
quence) is passed through the fully connected layer to make a prediction. We use only the last
hidden state (output[:, -1, :]) as it contains information about the entire input sequence.

Training Setup

Hyperparameters

1 EMBED_DIM = 64

2 HIDDEN_DIM = 128

3 NUM_LAYERS = 3

4 VOCAB_SIZE = len(vocab)

• ‘EMBED DIM‘ sets the dimension of each word embedding.

• ‘HIDDEN DIM‘ specifies the size of the hidden state in the RNN.

• ‘NUM LAYERS‘ defines how many RNN layers are stacked on top of each other.

• ‘VOCAB SIZE‘ is the total number of unique words in the vocabulary.

Device Setup

1 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

2 model = DeepRnn(VOCAB_SIZE , EMBED_DIM , HIDDEN_DIM , NUM_LAYERS).to(device)

This code checks if a GPU is available, otherwise it falls back to the CPU.

DataLoader Setup

1 from torch.utils.data import TensorDataset , DataLoader

2 train_dataset = TensorDataset(torch.tensor(inputs), torch.tensor(targets))

3 train_loader = DataLoader(train_dataset , batch_size =32, shuffle=True)

• ‘TensorDataset‘ is used to pair the inputs and targets into a dataset object.

• ‘DataLoader‘ wraps the dataset and enables mini-batch processing with shuffling for better gen-
eralization.

Loss Function and Optimizer

1 criterion = nn.CrossEntropyLoss () # For multi -class classification

2 optimizer = optim.Adam(model.parameters (), lr =0.0001) # Adam optimizer

• ‘CrossEntropyLoss‘ is commonly used for multi-class classification problems, such as predicting
the next word in the vocabulary.

• ‘Adam‘ is an adaptive optimizer that uses learning rate adjustments to efficiently update model
parameters.
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Training Loop

The following function defines how the model is trained over multiple epochs:

1 def train(model , train_loader , criterion , optimizer , epochs):

2 model.train ()

3 loss_values = []

4 for epoch in range(epochs):

5 total_loss = 0

6 for batch_inputs , batch_targets in train_loader:

7 batch_inputs , batch_targets = batch_inputs.to(device), batch_targets.to(

device)

8 optimizer.zero_grad () # Zero gradients from previous step

9 outputs = model(batch_inputs) # Forward pass

10 loss = criterion(outputs , batch_targets) # Compute loss

11 loss.backward () # Backpropagate gradients

12 optimizer.step() # Update parameters

13 total_loss += loss.item() # Track total loss

14 avg_loss = total_loss / len(train_loader)

15 loss_values.append(avg_loss)

16 print(f"Epoch␣[{epoch␣+␣1}/{ epochs}],␣Loss:␣{avg_loss :.4f}")

17 return loss_values

This function trains a model using a given dataset, loss function, and optimizer over multiple epochs.
Here’s what it does step-by-step:

• Model in Training Mode: model.train() sets the model to training mode.

• Epoch Loop: For each epoch:

– It iterates through batches of data (train loader).

– Data to Device: Moves the input data and target labels to the correct device (CPU/GPU).

– Zero Gradients: Clears gradients from the previous step (optimizer.zero grad()).

– Forward Pass: Passes input through the model to get predictions.

– Loss Calculation: Compares predictions with actual labels and computes the loss.

– Backpropagation: Computes gradients (loss.backward()).

– Optimizer Step: Updates model parameters using gradients (optimizer.step()).

– Tracks and accumulates the total loss.

• Average Loss: At the end of each epoch, calculates and prints the average loss for that epoch.

• Return Loss: Returns the list of average loss values over all epochs.

Next-Word Prediction Function

Once the model is trained, we can use it for word prediction.

1 def predict_next_word(model , input_text , seq_length):

2 model.eval() # Set model to evaluation mode

3 words = pre_process_data(input_text) # Preprocess input text

4 tokens = [word_to_index[word] if word in word_to_index else 0 for word in words]

5 tokens = tokens[-seq_length :] # Use only the last seq_length tokens

6 tokens = torch.tensor(tokens).unsqueeze (0).to(device)

7

8 with torch.no_grad (): # Turn off gradient tracking

9 output = model(tokens) # Get model prediction

10 predicted_index = torch.argmax(output , dim=1).item() # Get predicted word index

11

12 return index_to_word[predicted_index] # Return predicted word

The predict next word function predicts the next word in a sequence given some input text. Here’s
what it does step-by-step:

• Set Model to Evaluation Mode: model.eval() sets the model to evaluation mode, disabling
layers like dropout that are only used during training.
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• Preprocess Input: pre process data(input text) is used to preprocess the input text (e.g.,
tokenizing, cleaning).

• Convert Words to Indices: Each word in the preprocessed text is converted to its corresponding
index in the vocabulary. If a word is not found in the vocabulary, it is replaced with the index for
the <unk> (unknown) token.

• Use Last seq length Tokens: Only the last seq length tokens are retained from the input
sequence.

• Move to Device: The tokens are converted to a PyTorch tensor and moved to the correct device
(CPU/GPU).

• Turn Off Gradient Tracking: with torch.no grad() is used to disable gradient tracking, as
we are only performing inference and don’t need gradients.

• Forward Pass: The model generates a prediction for the next word based on the input sequence.

• Get Predicted Word Index: The predicted word index is found by applying torch.argmax(output,
dim=1) to the model’s output, which gives the index of the word with the highest probability.

• Return Predicted Word: The index of the predicted word is mapped back to the word using
index to word, and the predicted word is returned.

Advanced Models: LSTM, GRU, Bi-directional RNN

We can extend our basic RNN model to include **LSTMs**, **GRUs**, and **Bi-directional RNNs**.

1 class Text_prediction(nn.Module):

2 def __init__(self , vocab_size , embed_dim , hidden_dim , num_layers , model_type="RNNs",

bidirectional=False):

3 super(Text_prediction , self).__init__ ()

4 self.embeddings = nn.Embedding(vocab_size , embed_dim)

5

6 if model_type == "RNNs":

7 self.rnn = nn.RNN(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

8 elif model_type == "LSTMs":

9 self.rnn = nn.LSTM(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

10 elif model_type == "GRUs":

11 self.rnn = nn.GRU(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

12

13 if bidirectional:

14 self.fc = nn.Linear(hidden_dim * 2, vocab_size) # Double hidden_dim for

bidirectional

15 else:

16 self.fc = nn.Linear(hidden_dim , vocab_size)

The Text prediction class defines a model for text prediction that can use different types of RNN
architectures (RNN, LSTM, or GRU). It includes an embedding layer, an RNN (or its variants), and a
fully connected layer to predict the next word in the sequence. Here’s a breakdown of the class:

• Initialization:

– self.embeddings = nn.Embedding(vocab size, embed dim): This embedding layer trans-
forms word indices into dense vectors of size embed dim.

– RNN Type Selection: The model can use either an RNN, LSTM, or GRU layer. This is
controlled by the model type parameter.

– self.rnn: The RNN layer is defined based on the selected model type:

∗ If model type is RNNs, an RNN layer is used.

∗ If model type is LSTMs, an LSTM layer is used.

∗ If model type is GRUs, a GRU layer is used.
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– bidirectional: If set to True, the RNN processes the sequence in both forward and backward
directions, doubling the size of the hidden state.

– self.fc: This fully connected layer takes the output of the RNN and projects it to the
vocabulary size (vocab size).

∗ If bidirectional=True, the size of the hidden state is doubled, so the input to the fully
connected layer is hidden dim * 2.

∗ If bidirectional=False, the size of the hidden state is hidden dim.

Word2Vec Model for Embedding Learning

1 class Word2Vec(nn.Module):

2 def __init__(self , vocab_size , embed_dim):

3 super(Word2Vec , self).__init__ ()

4 self.embeddings = nn.Embedding(vocab_size , embed_dim) # Word embeddings

5 self.output_layer = nn.Linear(embed_dim , vocab_size) # Output layer for context

prediction

6

7 def forward(self , x):

8 x = self.embeddings(x) # Convert word indices to embeddings

9 x = self.output_layer(x) # Predict context words

10 return x

The Word2Vec class is a simple implementation of a word embedding model, commonly used for
learning word representations in natural language processing tasks. The model is built using PyTorch
and has two main layers: an embedding layer and a linear output layer. Here’s a breakdown of the class:

• Initialization:

– self.embeddings = nn.Embedding(vocab size, embed dim): This is the embedding layer,
which converts word indices into dense vectors (word embeddings). The size of the embedding
vectors is defined by embed dim.

– self.output layer = nn.Linear(embed dim, vocab size): This is the output layer, which
predicts context words for each input word. It maps the embedding vector to a vector of size
vocab size, representing the likelihood of each word in the vocabulary being a context word
for the input word.

• Forward Pass:

– x = self.embeddings(x): The input word indices are passed through the embedding layer,
converting them into word embeddings.

– x = self.output layer(x): The resulting embeddings are passed through the output layer,
which predicts the context words (or context word probabilities) for each input word.

– return x: The model returns the predicted context word probabilities (logits).

This model learns to predict context words based on an input word, and the word embeddings are
learned during training by minimizing a suitable loss function (typically cross-entropy).
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Sentiment Analysis using PyTorch

In this section, we demonstrate how to perform sentiment analysis on a dataset of cyberbullying-related
tweets using deep learning techniques in PyTorch. This includes:

• Text preprocessing.

• Vocabulary creation.

• Data loading.

• Model creation using RNN, LSTM, or GRU.

• Training and evaluation.

Loading and Preprocessing Data

The first step is to load the dataset, which is assumed to be in CSV format. In this case, we have a
dataset of cyberbullying tweets stored in the file cyberbullying tweets.csv.

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 import numpy as np

5 import random

6 import matplotlib.pyplot as plt

7 import re

8 from collections import Counter

9 import pandas as pd

10

11 device = torch.device ("cuda" if torch.cuda.is_available () else "cpu")

12 print(f"Using device: {device }")

13 file_path = "cyberbullying_tweets.csv"

14 df = pd.read_csv(file_path)

15 df.head()

16 print(df[" cyberbullying_type "]. unique ())

This code loads the CSV file into a Pandas DataFrame and prints the first few rows of the data.
It also prints the unique values from the cyberbullying type column, which represents the different
classes (labels) in our dataset.

Cleaning Tweets

We need to preprocess the text data before passing it to our model. This includes:

• Converting the text to lowercase.

• Removing URLs and special characters.

• Tokenizing the text into words.

The following function performs these tasks:

1 def clean_tweets(text):

2 text = text.lower() # Convert to lowercase

3 text = re.sub(r"http\S+|www\S+| https\S+","",text ,flags = re.MULTILINE) # Remove

URLs

4 text = re.sub(r"\@\w+|\#","", text) # Remove mentions and hashtags

5 words = text.split () # Tokenize by splitting on spaces

6 return words

7

8 df[" tweet_text "] = df[" tweet_text "]. apply(clean_tweets)

9 df.head()
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Building Vocabulary

Once the tweets are cleaned, we build the vocabulary by counting the occurrences of each word in the
entire dataset. We use the Counter class from the collections module for this task:

1 words_counts = Counter(word for sentence in df[" tweet_text "] for word in sentence)

2 vocab = {word:i+2 for i,word in enumerate(words_counts.keys())} # Assign indices to

each word

3 vocab["<pad >"] = 0 # Padding token

4 vocab["<unk >"] = 1 # Unknown token

Here, we create a vocabulary dictionary, where each word is mapped to a unique index. We add
special tokens <pad> and <unk> to handle padding and unknown words.

Converting Words to Indices

Next, we convert the words in each tweet to their corresponding indices from the vocabulary:

1 def text_to_indices(text):

2 return [vocab.get(word ,vocab["<unk >"]) for word in text] # Replace words with their

indices

3

4 df[" text_indices "] = df[" tweet_text "]. apply(text_to_indices)

Label Encoding

The target labels (cyberbullying categories) need to be converted into numerical format for classification.
We create a mapping from the label to a numeric value:

1 label_mapping = {label:i for i,label in enumerate(df[" cyberbullying_type "]. unique ())}

2 df[" label"] = df[" cyberbullying_type "]. map(label_mapping)

Train-Test Split

We split the dataset into training and testing sets, with 80% of the data used for training and 20% for
testing:

1 train_size = int (0.8* len(df))

2 train_df = df[: train_size]

3 test_df = df[train_size :]

Creating the Dataset and DataLoader

In PyTorch, we use the Dataset and DataLoader classes to handle batching and shuffling of the data.

1 from torch.utils.data import Dataset , DataLoader

2

3 class TextDataset(Dataset):

4 def __init__(self , texts , labels , seq_length =100):

5 self.texts = texts

6 self.labels = labels

7 self.seq_length = seq_length

8

9 def __len__(self):

10 return len(self.texts)

11

12 def __getitem__(self , index):

13 text = self.texts[index]

14 label = self.labels[index]

15

16 # Pad or truncate the sequence to the fixed length

17 if len(text) > self.seq_length:

18 text = text[:self.seq_length]

19 else:

20 text += [vocab["<pad >"]] * (self.seq_length - len(text))

21
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22 return torch.tensor(text , dtype=torch.long), torch.tensor(label , dtype=torch.

long)

23

24 train_dataset = TextDataset(train_df [" text_indices "].values , train_df ["label "]. values)

25 test_dataset = TextDataset(test_df [" text_indices "].values , test_df ["label "]. values)

26

27 train_loader = DataLoader(train_dataset , batch_size =32, shuffle=True)

28 test_loader = DataLoader(test_dataset , batch_size =32, shuffle=False)

This code creates a custom dataset and data loader for handling text data. Here’s a breakdown of each
part:

• ‘TextDataset‘ Class: This class is a custom dataset that processes the input text and labels.

– ‘ init (self, texts, labels, seq length=100)‘: The constructor initializes the dataset
with the text data, labels, and sequence length.

– ‘self.texts = texts‘: This stores the input text data (in tokenized form) in the dataset
object.

– ‘self.labels = labels‘: This stores the labels for the corresponding text data.

– ‘self.seq length = seq length‘: This defines the fixed length of the input sequences. If
sequences are shorter than this length, they will be padded; if they are longer, they will be
truncated.

• ‘ len (self)‘ Method: This method returns the number of samples (texts) in the dataset.

– ‘return len(self.texts)‘: It simply returns the length of the texts list, which tells how many
samples are in the dataset.

• ‘ getitem (self, index)‘ Method: This method retrieves a specific sample (text and label) by
index.

– ‘text = self.texts[index]‘: It retrieves the text (word indices) for the sample at the specified
index.

– ‘label = self.labels[index]‘: It retrieves the corresponding label for that sample.

– Padding or Truncating:

∗ If the sequence is longer than the defined seq length, it is truncated to the seq length.

∗ If the sequence is shorter, it is padded with the padding token <pad> until the sequence
reaches seq length.

– ‘return torch.tensor(text, dtype=torch.long), torch.tensor(label, dtype=torch.long)‘:
The text (word indices) and the label are returned as PyTorch tensors. The tensor type is
torch.long, as the indices are integers.

• ‘train dataset‘ and ‘test dataset‘: These are instances of the TextDataset class, created from
the training and testing data.

– ‘train dataset = TextDataset(train df[”text indices”].values, train df[”label values”])‘:
This creates a dataset for the training data, using the tokenized text indices and the corre-
sponding labels from the train df DataFrame.

– ‘test dataset = TextDataset(test df[”text indices”].values, test df[”label values”])‘:
Similarly, this creates a dataset for the testing data from the test df DataFrame.

• ‘DataLoader‘: This class is used to load data in batches. It can also shuffle the data and load it
in parallel.

– ‘train loader = DataLoader(train dataset, batch size=32, shuffle=True)‘: This cre-
ates a data loader for the training dataset. It will load the data in batches of 32 and shuffle
the data for better generalization during training.

– ‘test loader = DataLoader(test dataset, batch size=32, shuffle=False)‘: This cre-
ates a data loader for the test dataset. The test data is not shuffled because we just need to
evaluate the model on the entire dataset.
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Model Creation

The model for this task is a simple RNN, LSTM, or GRU-based classifier. It takes in sequences of word
indices and classifies them into one of the cyberbullying categories. Here’s the model architecture:

1 class Text_classifier(nn.Module):

2 def __init__(self , vocab_size , embed_dim , hidden_dim , num_layers , number_classes ,

model_type ="RNNs", bidirectional=False):

3 super(Text_classifier , self).__init__ ()

4 self.embeddings = nn.Embedding(vocab_size , embed_dim)

5

6 if model_type == "RNNs":

7 self.rnn = nn.RNN(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

8 elif model_type == "LSTMs":

9 self.rnn = nn.LSTM(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

10 elif model_type == "GRUs":

11 self.rnn = nn.GRU(embed_dim , hidden_dim , num_layers , batch_first=True ,

bidirectional=bidirectional)

12

13 if bidirectional:

14 self.fc = nn.Linear(hidden_dim * 2, number_classes)

15 else:

16 self.fc = nn.Linear(hidden_dim , number_classes)

17

18 def forward(self , x):

19 embeddings = self.embeddings(x)

20 output , hidden = self.rnn(embeddings)

21 output = self.fc(output[:, -1, :]) # Take the last hidden state for

classification

22 return output

The model consists of:

• An embedding layer.

• An RNN, LSTM, or GRU layer (depending on the model type).

• A fully connected layer that produces the final class predictions.

Training the Model

The training loop is defined as follows:

1 def train(model , train_loader , criterion , optimizer , epochs):

2 model.train ()

3 loss_values = []

4

5 for epoch in range(epochs):

6 total_loss = 0

7 for batch_inputs , batch_targets in train_loader:

8 batch_inputs , batch_targets = batch_inputs.to(device), batch_targets.to(

device)

9

10 optimizer.zero_grad ()

11 outputs = model(batch_inputs)

12

13 loss = criterion(outputs , batch_targets)

14 loss.backward ()

15 optimizer.step()

16

17 total_loss += loss.item()

18

19 avg_loss = total_loss / len(train_loader)

20 loss_values.append(avg_loss)

21 print(f"Epoch [{ epoch +1}/{ epochs}], Loss: {avg_loss :.4f}")

22

23 return loss_values

9



The train function trains a model for a specified number of epochs. Here’s a brief breakdown of its
steps:

• Model in Training Mode: model.train() sets the model to training mode.

• Epoch Loop: For each epoch, the function:

– Iterates through batches of data from train loader.

– Moves the data and labels to the correct device (CPU/GPU).

– Computes predictions using the model.

– Calculates the loss using the criterion.

– Performs backpropagation and updates model parameters using optimizer.

• Average Loss: After each epoch, the average loss is computed and printed.

• Return Loss: The function returns the list of average losses for each epoch.

Key Takeaways

The session delves into the construction and training of deep learning models, particularly in the do-
main of natural language processing (NLP). The following points summarize the essential concepts and
methods discussed:

• Deep Recurrent Neural Network (RNN) for Next-Word Prediction: The foundation of
the approach is a Deep Recurrent Neural Network (RNN) designed for next-word prediction. The
model consists of three primary components: an embedding layer, a recurrent layer (which can be
an RNN, LSTM, or GRU), and a fully connected layer that produces the final prediction.

• Forward Pass of the Model: The forward pass of the model entails passing the input data
through the embedding layer, followed by the recurrent layer, and finally through the fully con-
nected layer to generate the predicted output.

• Hyperparameter Tuning: The model’s performance is influenced by hyperparameters such as
the embedding dimension, hidden state size, and the number of layers within the recurrent network.
These parameters are crucial for determining the model’s complexity and capacity to learn temporal
dependencies.

• Device Management: A key aspect of model deployment involves ensuring compatibility with
available hardware, whether CPU or GPU. This is facilitated by PyTorch’s device management
capabilities, which optimize the computational process.

• Text Preprocessing: Text preprocessing is an essential step in NLP tasks. This includes cleaning
the data, tokenizing it into words, and padding sequences to ensure uniform length, enabling batch
processing.

• Data Handling with DataLoader: Efficient data handling is achieved using PyTorch’s Dat-
aLoader, which allows for automatic batching, shuffling, and parallel data loading, ensuring that
the model can be trained efficiently on large datasets.

• Optimizer and Loss Function: The Adam optimizer is employed in conjunction with cross-
entropy loss, both of which are standard for classification tasks. These components facilitate the
optimization of model parameters through backpropagation.

• Training the Model: Training is conducted over multiple epochs, with performance being mon-
itored through the calculation of average loss, which provides insight into the model’s learning
progress.

• Word2Vec for Embedding Learning: Word2Vec is introduced as a method for learning word
embeddings, where each word is represented by a dense vector. This model predicts context words
based on a given target word, facilitating the capture of semantic relationships between words.

• Application to Text Classification: The techniques covered are applicable to various text
classification tasks, such as sentiment analysis, where the model’s architecture can be adapted to
classify text into predefined categories based on learned representations.
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