
Understanding Word Prediction: A Hands-on Guide

to Building RNN-based Models

Minor in AI - IIT ROPAR

27th March, 2025

A Story of Word Prediction

Imagine you’re typing a message on WhatsApp or composing an email in Gmail. As you type, these
applications seem to “understand” what you are trying to say, offering suggestions for the next word or
even completing your sentence. These applications make use of advanced Natural Language Processing
(NLP) models that are trained on vast amounts of text data to predict the most likely word or phrase
based on the context of the sentence. The models behind this feature are built using techniques like word
embeddings and Recurrent Neural Networks (RNNs). In this session, we explored how these techniques
work and how we can use them to build models that predict the next word in a sequence given a few
words as input. We also examined how relationships between words are learned by these models.

Word Embeddings: Transforming Words into Vectors

• Definition: Word embeddings are a technique used to represent words as vectors in a high-
dimensional space. These vectors capture the semantic meaning of words, enabling models to
understand the context in which words are used. Each word is assigned a vector of fixed length,
where the dimension can be adjusted based on the specific requirements of the task at hand.

• Basic Technique – One-Hot Encoding: The simplest form of word embedding is one-hot
encoding, where each word is represented by a vector as long as the vocabulary. For example,
for a vocabulary consisting of five words, a word like ”cat” could be represented as [1, 0, 0, 0, 0],
indicating that ”cat” corresponds to the first word in the vocabulary. While easy to understand
and implement, one-hot encoding has limitations—it does not capture any relationships between
words. For instance, ”cat” and ”dog” are both animals, but one-hot encoding treats them as
entirely separate entities.

Limitations of One-Hot Encoding

• No Semantic Relationship: One-hot encoding treats each word as independent, ignoring rela-
tionships between similar words. For example, ”dog” and ”cat” should be close in the vector space
since they are both animals, yet one-hot encoding doesn’t reflect this similarity.

• Scalability Issue: As the vocabulary grows, one-hot encoding becomes increasingly inefficient,
with sparse vectors for each word. It also fails to capture context, which is critical in tasks like
sentiment analysis, text generation, or next-word prediction.

Advanced Word Embedding Techniques: Word2Vec and Skip-
Gram

To overcome the limitations of one-hot encoding, we turned to more sophisticated techniques like
Word2Vec, which is designed to capture word meanings by learning from their contexts. Word2Vec
uses two methods: Skip-Gram and CBOW (Continuous Bag of Words).

1

• Word2Vec – Skip-Gram Model: The Skip-Gram model works by taking a target word and
predicting the surrounding context words. The idea is that words that appear in similar contexts
tend to have similar meanings. For example, for the target word ”dog,” the model would try
to predict context words like ”bark,” ”pet,” ”animal,” etc., which often appear around ”dog” in
sentences.

• Window Size in Skip-Gram: The window size parameter defines how many surrounding words
will be considered for context. A window size of 2 means the model will look at two words before
and two words after the target word.

• Benefits: Skip-Gram captures semantic relationships between words, making it much more effec-
tive than one-hot encoding. It enables the model to represent words like ”dog” and ”cat” as similar
vectors because they often appear in similar contexts.

Recurrent Neural Networks (RNNs) for Sequence Prediction

Once we understood word embeddings, we moved to Recurrent Neural Networks (RNNs), which
are used for processing sequences of data, such as text. In tasks like next-word prediction, RNNs are ideal
because they can process input sequences while maintaining an internal state that captures information
from previous words in the sequence.

• RNN Training for Next-Word Prediction: The RNN model learns to predict the next word
in a sequence. For example, if the input is ”I am going to,” the model will try to predict the next
word (e.g., ”school” or ”the”). The RNN uses its internal state (or memory) to understand the
relationship between words in the sequence, enabling it to generate plausible predictions.

• Data Preparation: To train the RNN, we first preprocess the text by converting it to lowercase,
removing non-textual characters (e.g., punctuation), and splitting it into tokens (words). Then, we
create training data by selecting sequences of words (e.g., the first 5 words) and using the 6th word
as the target for prediction. This process is repeated across the entire corpus, generating multiple
training examples.

Training the RNN Model

• Model Architecture: The RNN is built using PyTorch, a deep learning library. We define
the architecture by specifying the vocabulary size (the total number of unique words), the em-
bedding dimension (the size of the vector used to represent each word), and the hidden layer
dimensions (the number of units in the RNN’s hidden layers).

• Loss Function: The model uses cross-entropy loss to measure the difference between the
predicted word and the actual target word. The optimizer (Adam optimizer) is then used to update
the weights of the model to minimize the loss, making the model’s predictions more accurate over
time.

Enhancements: Stop Words and Advanced Embedding

To improve the model’s performance, we made several enhancements:

• Stop Word Removal: Words like ”the,” ”is,” and ”and” (known as stop words) appear very
frequently in text but don’t carry much semantic meaning. By removing stop words during pre-
processing, we reduce the size of the vocabulary and allow the model to focus on more meaningful
words, improving the model’s efficiency and accuracy.

• Word2Vec for Better Embeddings: Instead of using basic embeddings, we switched toWord2Vec,
which uses the Skip-Gram model to learn better word representations. This allows the model to
capture word context and semantic meaning more effectively than simple embeddings.

2

Skip-Gram Model in Word2Vec

• Skip-Gram in Action: In the Skip-Gram model, given a target word (e.g., ”dog”), the model
tries to predict the surrounding context words. If the target word is ”dog,” the model might predict
words like ”pet,” ”animal,” ”bark,” depending on the context in which ”dog” appears.

• Building Word Pairs: For each target word, the model forms pairs with its surrounding words.
For instance, with the word ”dog” as the target and a window size of 2, the context words might
be ”pet,” ”animal,” ”bark,” ”canine,” and so on.

Training Process and GPU Utilization

Training the RNN involves feeding the sequences of words into the model in batches. For efficiency,
the model is trained using batch processing (e.g., processing 32 words at a time), and the weights of
the model are updated after processing each batch. The training continues for several epochs, and after
each epoch, the loss is calculated and minimized using backpropagation.

• Using GPU: The training of neural networks can be very resource-intensive, especially with large
datasets. To speed up the process, we used Google Colab, which provides access to a GPU. This
significantly reduced the time taken for training.

Model Prediction and Real-World Application

Once the model is trained, we use it to predict the next word in a given sequence. The model can
take any sequence of words as input and, based on its training, predict the most likely next word. This
ability to predict the next word is similar to features in WhatsApp and Gmail, where the model suggests
completions or auto-fills your sentences.

Improvements for Better Performance

• Using Word2Vec: Replacing simple word embeddings with Word2Vec improved the model’s
ability to capture semantic relationships between words. This change helped the model predict
words more accurately by learning the context in which words appear.

• Stop Word Removal: Removing common but meaningless words (stop words) improved the
efficiency of the model, ensuring it focused on words that actually contributed to understanding
the context.

Coding Part

Step 1: Setting Up the Environment and Importing Libraries

We start by importing the required libraries. These libraries include PyTorch for creating the neural
network, NumPy for numerical operations, and several others for text processing.

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 import numpy as np

5 import random

6 import re

7 from collections import Counter

8 import matplotlib.pyplot as plt

9 from nltk.corpus import stopwords

10 from torch.utils.data import DataLoader , TensorDataset

11 import nltk

• torch: The core library for building and training deep learning models in Python.

3

• torch.nn: Contains the neural network components such as layers and loss functions.

• torch.optim: Provides optimization algorithms such as Adam for training the model.

• re: A regular expression library for cleaning text.

• Counter: Used to count occurrences of words in the text.

• matplotlib.pyplot: For plotting graphs to visualize the results.

• nltk.corpus.stopwords: For handling stopwords, which are common words that don’t add much
meaning.

• torch.utils.data: For handling datasets and batching.

Step 2: Setting Random Seeds for Reproducibility

To ensure that our results are consistent each time we run the code, we set random seeds. This ensures
that the model’s initialization and training remain the same across different runs.

1 torch.manual_seed (182)

2 random.seed (231)

3 np.random.seed (248)

- torch.manual seed(): Ensures the randomness in PyTorch is the same each time. - ran-
dom.seed(): Ensures Python’s built-in random functions are consistent. - np.random.seed(): Ensures
NumPy’s random number generation is fixed.

Step 3: Loading and Preprocessing the Data

Next, we load the text data and preprocess it. The goal is to clean the text by converting it to lowercase,
removing unwanted characters, and splitting it into individual words (tokens).

1 file_path = "War_and_Peace.txt" # Replace with your text file

2 with open(file_path , "r", encoding="utf -8") as f:

3 lines = f.read()

4

5 def pre_process_data(text):

6 text = text.lower() # Convert to lowercase

7 text = re.sub(r"[^a-z\s]", "", text) # Remove non -alphabetic characters

8 words = text.split () # Split text into words (tokens)

9 return words

10

11 tokens = pre_process_data(lines) # Apply preprocessing

12 print("Sample␣tokens␣->", tokens [:10]) # Show first 10 tokens (words)

- Lowercasing: Converts all text to lowercase so that ”The” and ”the” are treated the same. -
Regex cleaning: Removes punctuation and numbers using a regular expression. - Tokenization:
Splits the text into words for further processing.

Step 4: Building Vocabulary and Word Indices

We now build the vocabulary, which consists of all unique words in the text. We also create two
dictionaries: one mapping words to indices and another mapping indices to words.

1 word_count = Counter(tokens)

2

3 vocab = sorted(word_count.keys()) # Sort the vocabulary alphabetically

4

5 word_to_index = {word: i for i, word in enumerate(vocab)}

6 index_to_word = {i: word for i, word in enumerate(vocab)}

7

8 print("Sample␣word␣to␣index␣->", list(word_to_index.items ())[:10])

- word count: This counts the frequency of each word in the text. - vocab: This is the list of
unique words, sorted alphabetically. - word to index: A dictionary mapping each word to a unique
index. - index to word: A reverse dictionary that maps each index back to a word.

4

Step 5: Creating Sequences for Training

In order to train our model to predict the next word, we need to prepare sequences of words. For each
sequence, the model will try to predict the word that comes after it.

1 seq_length = 5 # Number of words in each sequence

2

3 def create_sequence(tokens , seq_length):

4 inputs = []

5 targets = []

6

7 for i in range(len(tokens) - seq_length):

8 seq_in = tokens[i:i + seq_length] # Input sequence

9 seq_out = tokens[i + seq_length] # Target word (the word after the input

sequence)

10

11 inputs.append ([word_to_index[word] for word in seq_in]) # Convert words to

indices

12 targets.append(word_to_index[seq_out]) # Convert target to index

13

14 return inputs , targets

15

16 inputs , targets = create_sequence(tokens , seq_length) # Create sequences

17 print(inputs [0]) # Show first input sequence

18 print(targets [0]) # Show corresponding target word

- Input Sequence: We take seq length words from the text as input and use the next word as
the target. - Conversion to Indices: Each word is converted to its corresponding index using the
word to index dictionary.

Step 6: Defining the Deep RNN Model

Now we define the model, which is a Recurrent Neural Network (RNN). The model consists of an
embedding layer, an RNN layer, and a fully connected layer that outputs the probabilities of the next
word.

1 class DeepRnn(nn.Module):

2 def __init__(self , vocab_size , embed_dim , hidden_dim , num_layers):

3 super(DeepRnn , self).__init__ ()

4 self.embeddings = nn.Embedding(vocab_size , embed_dim) # Word embeddings

5 self.rnn = nn.RNN(embed_dim , hidden_dim , num_layers , batch_first=True) # RNN

layer

6 self.fc = nn.Linear(hidden_dim , vocab_size) # Fully connected layer for

predictions

7

8 def forward(self , x):

9 embeddings = self.embeddings(x) # Convert word indices to embeddings

10 output , hidden = self.rnn(embeddings) # Process with RNN

11 output = self.fc(output[:, -1, :]) # Get output from the last RNN time step

12 return output

- Embedding Layer: Converts each word into a fixed-size vector. - RNN Layer: Processes
sequences of word embeddings and learns relationships over time. - Fully Connected Layer: Outputs
predictions for the next word.

Step 7: Training the Model

Now, we define the training process. This includes specifying the loss function, optimizer, and data
loader. The model is trained by minimizing the cross-entropy loss using the Adam optimizer.

1 # Hyperparameters

2 EMBED_DIM = 64

3 HIDDEN_DIM = 128

4 NUM_LAYERS = 3

5 VOCAB_SIZE = len(vocab)

6 BATCH_SIZE = 32

7 EPOCHS = 50

8 LR = 0.001

9

10 # Create model and move to the appropriate device (GPU/CPU)

5

11 device = torch.device("cuda" if torch.cuda.is_available () else "cpu")

12 model = DeepRnn(VOCAB_SIZE , EMBED_DIM , HIDDEN_DIM , NUM_LAYERS).to(device)

13

14 # Loss and optimizer

15 criterion = nn.CrossEntropyLoss () # Cross -entropy loss for classification

16 optimizer = optim.Adam(model.parameters (), lr=LR) # Adam optimizer

17

18 # Create data loader

19 train_dataset = TensorDataset(torch.tensor(inputs), torch.tensor(targets))

20 train_loader = DataLoader(train_dataset , batch_size=BATCH_SIZE , shuffle=True)

- Cross-Entropy Loss: Used to measure the difference between the predicted and actual word
indices. - Adam Optimizer: Used to optimize the model’s weights during training. - DataLoader:
Handles batching of data during training.

Step 8: Training Loop

In this step, we define the training loop. The model is trained for a specified number of epochs. After
each epoch, we compute the average loss and update the model’s weights.

1 def train(model , train_loader , criterion , optimizer , epochs):

2 model.train ()

3 loss_values = []

4

5 for epoch in range(epochs):

6 total_loss = 0

7 for batch_inputs , batch_targets in train_loader:

8 batch_inputs , batch_targets = batch_inputs.to(device), batch_targets.to(

device)

9

10 optimizer.zero_grad () # Reset gradients

11 outputs = model(batch_inputs) # Forward pass

12

13 loss = criterion(outputs , batch_targets) # Compute loss

14 loss.backward () # Backpropagation

15 optimizer.step() # Update weights

16

17 total_loss += loss.item()

18

19 avg_loss = total_loss / len(train_loader)

20 loss_values.append(avg_loss)

21 print(f"Epoch␣[{epoch +1}/{ epochs}],␣Loss:␣{avg_loss :.4f}")

22

23 return loss_values

24

25 # Train the model

26 loss_values = train(model , train_loader , criterion , optimizer , EPOCHS)

- Forward Pass: The model makes predictions based on the current weights. - Loss Calculation:
We calculate the loss (difference between predicted and actual words). - Backpropagation: Gradients
are computed, and weights are updated.

Step 9: Predicting the Next Word

Once the model is trained, we can use it to predict the next word in a sequence. This is done by passing
a sequence of words through the trained model.

1 def predict_next_word(model , input_text , seq_length):

2 model.eval()

3

4 words = input_text.lower().split () # Convert input to lowercase and split into

words

5 tokens = [word_to_index[word] if word in word_to_index else 0 for word in words]

6 tokens = tokens[-seq_length :] # Use only the last sequence

7 tokens = torch.tensor(tokens).unsqueeze (0).to(device)

8

9 with torch.no_grad ():

10 output = model(tokens) # Get the model output

11 predicted_index = torch.argmax(output , dim=1).item() # Get the most probable

word

6

12

13 return index_to_word[predicted_index]

14

15 # Test with a sample input

16 sample_input = "deep␣learning␣is␣the␣most␣important␣and␣decisive"

17 predicted_word = predict_next_word(model , sample_input , seq_length =5)

18 print(f"Predicted␣next␣word:␣{predicted_word}")

- Prediction: The input sequence is processed by the model to predict the next word. - Model
Output: The model outputs a probability distribution, and we select the word with the highest proba-
bility.

Key Takeaways

• Word Prediction Task: The task is to predict the next word in a sequence given a few input
words, which is similar to the word completion or suggestion features in apps like WhatsApp and
Gmail.

• Word Embeddings: Word embeddings represent words as vectors in a high-dimensional space to
capture semantic meanings and context. This helps models understand the relationships between
words.

• Limitations of One-Hot Encoding: One-hot encoding treats each word as independent and
does not capture semantic relationships between words, making it inefficient as the vocabulary
grows.

• Advanced Word Embedding (Word2Vec): Word2Vec’s Skip-Gram model captures the se-
mantic relationships between words by predicting context words based on a target word, improving
upon simple methods like one-hot encoding.

• Recurrent Neural Networks (RNNs): RNNs are ideal for sequence prediction tasks because
they process sequences while maintaining an internal state that captures information from previous
words.

• Training the RNN Model: The model is trained using cross-entropy loss to measure prediction
accuracy, and the Adam optimizer is used to update the model’s weights and minimize the loss.

• Enhancements: Stop word removal reduces the size of the vocabulary and improves model effi-
ciency, while using Word2Vec embeddings enhances the model’s ability to capture word meanings
and relationships.

• GPU Utilization: Using a GPU significantly speeds up the training process, which is especially
important when working with large datasets.

• Model Prediction: After training, the model predicts the next word in a sequence by processing
the input words and outputting the most likely next word based on learned patterns.

• Practical Use: The trained model can be used for real-world applications such as text auto-
completion and next-word prediction, similar to the predictive text features in modern messaging
apps.

7

