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From Sequential Listening to Smart Attention

Imagine you’re at a family gathering. Everyone is having conversations in small groups, some talking
about food, some about politics, and some kids are just playing around. Now imagine your curious
younger cousin pulls you aside and asks, “Hey, can you tell me what everyone here is talking about?”

To do that, you’d have to observe each group, pay attention to who is saying what, and try to
understand which conversations are related, which ones are just noise, and who is influencing whom.
You’re not just listening to people in a sequence, you’re attending to everyone, all at once, figuring out
which voices are more relevant, and which ones matter less in understanding the full picture.

This is exactly what transformers do in language processing.
Earlier, machines used to read sentences word by word — like listening to people talk in a long line,

one by one. But now, transformers let machines do what you just did: attend to everyone at once,
understand relevance, and pick out the important parts.

Let’s now jump into this technical yet beautiful journey.

The Journey Begins: The Limitation of Sequential Models

Previously, models like RNNs and LSTMs were used to process text. They worked well for many tasks
but had a key limitation — they processed input sequentially:

• The model had to read a sentence word by word.

• This made training slow and hard to parallelize.

• They struggled to remember long-term dependencies.

This is where the Transformer architecture (Vaswani et al., 2017) came in and changed the game.
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What Makes Transformers Special?

Transformers allow us to look at all words in a sentence simultaneously, and figure out their relation-
ships. This is done using the attention mechanism, specifically, self-attention.

The Trinity: Query, Key, and Value Vectors

Each word is first embedded into a vector. Then for each word, we derive:

• Query (Q): What this word is looking for.

• Key (K): What this word has to offer.

• Value (V): What this word carries as content.

These are derived using learned matrices:

Q = X ·WQ, K = X ·WK , V = X ·WV

where X is the input matrix of embeddings.
Example: If X ∈ R4×8 and WQ ∈ R8×5, then Q ∈ R4×5.
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Self-Attention Mechanism: How Words Understand Each Other

Let us now dive deep into the concept of self-attention, which lies at the heart of the Transformer
architecture. The main goal of self-attention is to allow each word in a sentence to look at, or attend to,
other words in the same sentence and decide how much importance it should give them when computing
its own contextual representation.

Suppose we are focusing on a particular word, say the third word in a sentence. Its query vector is
denoted as Q3. We want to evaluate how relevant all other words in the sentence are to this word. To
achieve this, we compare Q3 with the key vectors of all other words, i.e., K1,K2,K3, . . . ,Kn. This is
accomplished through the following steps:

Step 1: Compute Similarity (Dot Product + Scaling)

To assess the relatedness between words, we compute the dot product between the query vector Qi (for
example, Q3) and each key vector Kj . The dot product acts as a similarity measure — a higher value
indicates a stronger alignment or relevance between the two vectors.

scorei,j =
Qi ·KT

j√
dk

Here, dk is the dimensionality of the key vectors. The division by
√
dk is known as scaling, which is

a crucial step. Without scaling, the dot product values can become large when dk is high, which may
push the softmax (next step) into regions with small gradients, hindering the learning process. Scaling
helps maintain stable gradients and efficient learning.

After this computation, for each word i, we obtain a list of raw similarity scores with all other words
j in the sentence.

Step 2: Convert Similarities into Probabilities (Softmax)

Once similarity scores are obtained for a given query Qi, we convert them into attention weights using
the softmax function:

αi,j = softmax(scorei,j)

The softmax operation performs two important functions:

• It converts the raw similarity scores into values between 0 and 1.

• It ensures that the resulting values sum to 1, thereby forming a probability distribution.

These probabilities indicate how much attention the i-th word should pay to the j-th word. If αi,3 is
large, it implies that word i finds word 3 highly relevant.

For instance, in the sentence “The animal didn’t cross the street because it was too tired,” the word
“it” (at position i) is more semantically linked to “the animal” than to “the street.” Thus, the attention
weight αi,j assigned to “the animal” would be higher.

Step 3: Generate the New Word Representation (Weighted Sum of Values)

Having determined how much each word should be attended to, we use the attention weights αi,j to
compute a weighted average of the value vectors:

Attention(Qi,K, V ) =
∑
j

αi,jVj

Each value vector Vj holds the actual content or representation of the word at position j. By summing
these vectors weighted by their attention scores αi,j , we generate a new, context-sensitive representation
for word i.

This final vector for word i is known as a context-aware embedding. It incorporates information not
only about the word itself but also about other words in the sentence, weighted by their importance or
relevance.
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Repeat for All Words

This process is carried out for every word in the sentence. The result is that each word ends up with a
new, enriched vector that reflects its meaning in the context of the entire sentence.

Example: If Q,K ∈ R4×5, then QKT ∈ R4×4, and multiplying with V ∈ R4×6 gives output ∈ R4×6.

Why Multiple Heads? Multi-Head Attention (MHA)

Each head learns different relationships.

• Create h heads, each with its own W i
Q,W

i
K ,W i

V .

• For each head:
headi = Attention(QW i

Q,KW i
K , V W i

V )

• Concatenate all heads:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O

Example: If 8 heads each output 64-dimensional vectors, the result is 512-dimensional before projection.

Putting It All Together: Encoder-Decoder Structure

Encoder: Understanding the Input

The Transformer architecture is structured as an Encoder-Decoder model, particularly useful in tasks like
machine translation, where an input sentence (e.g., in English) is transformed into an output sentence
(e.g., in French).

The encoder is responsible for analyzing and understanding the input sentence. It consists of multiple
identical layers (typically 6 in the original Transformer), and each layer has two sub-layers:

• Multi-Head Self-Attention Layer

• Feed-Forward Neural Network (FFN)
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Each of these sub-layers is surrounded by:

• Residual (Skip) Connections

• Layer Normalization

Let the input sentence be represented as a sequence of tokens:

X = {x1, x2, . . . , xn}

Each token is embedded and positionally encoded:

E = PositionalEncoding(Embedding(X)) ∈ Rn×dmodel

1. Multi-Head Self-Attention

We compute the query, key, and value matrices:

Q = EWQ, K = EWK , V = EWV

The self-attention mechanism:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V

Multiple heads are computed and concatenated:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O

Each head:

headi = Attention(QWQ
i ,KWK

i , V WV
i )

2. Feed-Forward Network (FFN)

The FFN is applied to each position independently:

FFN(x) = max(0, xW1 + b1)W2 + b2

3. Residual Connection + Layer Normalization

Each sub-layer is wrapped as:

LayerNorm(x+ Sublayer(x))

So, the final encoder output is:

Z = Encoder(X) ∈ Rn×dmodel

Decoder: Generating the Output

The decoder generates the output sequence one token at a time, using both the encoder output and
previously generated tokens. Each decoder layer has:

• Masked Multi-Head Self-Attention

• Cross-Attention (Encoder-Decoder Attention)

• Feed-Forward Network (FFN)

Let the output sequence be:

Y = {y1, y2, . . . , yt}
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1. Masked Multi-Head Self-Attention

Decoder inputs are embedded and positionally encoded:

EY = PositionalEncoding(Embedding(Y )) ∈ Rt×dmodel

Compute:

Q = EY W
Q, K = EY W

K , V = EY W
V

Masked attention:

MaskedAttention(Q,K, V ) = softmax

(
QK⊤
√
dk

+mask

)
V

2. Cross-Attention (Encoder-Decoder Attention)

The decoder attends to the encoder output Z:

CrossAttention(Q,K = Z, V = Z) = softmax

(
QZ⊤
√
dk

)
Z

3. Feed-Forward Network and Output

Like the encoder:

FFN(x) = max(0, xW1 + b1)W2 + b2

Final output probabilities:

P (yt | y1, . . . , yt−1, X) = softmax(FFN(Decoder Output))

Generation Process: A Loop

• Start with a special <SOS> token.

• Generate y1.

• Feed y1 back into the decoder to generate y2.

• Continue until <EOS> token is generated.

The Decoder-Only Model: GPT

The GPT (Generative Pre-trained Transformer) model adopts only the decoder portion of the original
Transformer architecture. Unlike encoder-decoder models that require the entire input sequence upfront
(e.g., for translation), GPT is designed for autoregressive next-word prediction. This means that given
a sequence of tokens, the model is trained to predict the next token in the sequence.

Example:

• Input: “The sun is”

• Output: “shining”

At the core of GPT lies a stack of transformer decoder blocks. Each block includes a masked multi-
head self-attention mechanism followed by a position-wise feed-forward network, both wrapped with
residual connections and layer normalization. The masking ensures that at each position, the model can
only attend to the current and previous positions—never future ones—thereby preserving the autore-
gressive property.

The input tokens are first embedded into dense vectors and enriched with positional encodings to
retain word order. These are then processed through the decoder layers. At each layer, the self-attention
mechanism computes query, key, and value matrices using learned weight matrices WQ, WK , and WV ,
enabling the model to determine which earlier tokens are most relevant for predicting the next word.
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Once the final hidden states are computed, they are passed through a linear layer followed by a
softmax to produce a probability distribution over the vocabulary for the next token.

Training:

• The model is trained using a cross-entropy loss between the predicted token probabilities and the
true next token in the sequence.

• During this process, the parameters of the self-attention (i.e., WQ, WK , WV ), the output projection
layers, and the feed-forward networks are updated via backpropagation.

The GPT model generates text by starting with a special token (e.g., <BOS>), predicting the first
token, appending it to the input, and repeating the process until a stopping condition (like an <EOS>

token) is met.

Enhancements: Layer Norm and Residual Connections

• Residual Connections: Add input to layer output.

• Layer Normalization: Normalize across layer to stabilize training.

Summary Table

Concept Description
Q, K, V Learned representations for each word (Query, Key, Value)
Self-Attention Measures similarity between words in a sentence

Scaled Dot Product QKT /
√
dk

Softmax Normalizes attention scores
Multi-Head Attention Uses multiple heads to learn diverse patterns
Encoder Contextualizes input sentence
Decoder Generates output sentence step by step
Residual + LN Stabilize and preserve info through network
GPT Decoder-only model for next-word prediction

Key Takeaways

• Transformers revolutionized NLP by enabling models to attend to all words in a sequence
simultaneously using the self-attention mechanism, overcoming the limitations of sequential models
like RNNs and LSTMs.

• The core idea behind attention is to allow each word to weigh the importance of all other
words in the input, producing context-aware representations for every word.

• Query, Key, and Value vectors form the foundation of self-attention. Each word generates these
vectors, and attention scores are calculated using scaled dot-product similarity between queries and
keys.

• Softmax is applied to attention scores to convert them into a probability distribution, which is
then used to compute a weighted sum of the value vectors—forming the new contextual embedding
for each word.

• Multi-Head Attention (MHA) allows the model to capture multiple types of relationships
between words by running multiple self-attention operations in parallel and concatenating their
results.

• The encoder-decoder architecture is especially powerful for sequence-to-sequence tasks like
machine translation, where the encoder processes the input and the decoder generates the output
step by step.

• GPT uses only the decoder block of the Transformer, focusing on autoregressive generation
by predicting the next token based on previously generated tokens.
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• Masking in GPT ensures the model doesn’t look ahead during training, preserving causality and
enabling one-token-at-a-time generation.

• Training Transformers involves cross-entropy loss, and the model parameters—including
attention weights and feed-forward layers—are updated using backpropagation.

• Residual connections and layer normalization are critical architectural components that help
stabilize and speed up training in deep networks.
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