Minor in Al
RNN & Deep RNN

A Practical Implementation

March 20, 2025

Minor in AI

1 Introduction

Recurrent Neural Networks (RNNs) are powerful for sequential data processing, such as
time series and natural language processing (NLP). This document explores:

e Implementing a simple RNN forward pass using NumPy.
e Understanding hidden state updates.
e Implementing a deep RNN with PyTorch.

e Tokenizing text and creating input sequences for training.

Figure 1: RNN PC : ResearchGate

2 Implementing an RNN Forward Pass in NumPy

First, we define an RNN forward pass, where we compute the next hidden state and the
output prediction at each time step.

2.1 Initializing Data and Parameters

| import numpy as np
3 np.random.seed (182)
4

5 # Input data: shape (5000, 5, 10) -> (features, batch size, time steps)
6 x_t = np.random.randn (5000, 5, 10)

7 # Initial hidden state: shape (231,5) -> (hidden size, batch size)

s a_prev = np.random.randn (231, 5)

Initializing parameters

SkipGram & GloVe

parameters = {}
parameters ["wl"] np.random.randn (231,5000) # Input to hidden weights
parameters ["w2"] np.random.randn (231,231) # Hidden to hidden weights
parameters["bl"] np.random.randn (231,1) # Bias for hidden state

5 parameters["b2"] np.random.randn (5000,1) # Bias for output

; parameters ["w3"] np.random.randn (5000,231) # Hidden to output weights

https://www.researchgate.net/figure/Fig-3-RNN-A-recurrent-neural-network-RNN-is-a-class-of-artificial-neural-networks_fig1_351840108

Minor in AI

2.2 Defining Softmax Function

Softmax is used for output activation in classification tasks.

1 def softmax(x):
2 return np.exp(x) / np.sum(np.exp(x), axis=0)

2.3 Implementing the RNN Cell Forward Pass

An RNN cell computes the next hidden state and the output prediction at a single time
step.
1 def rnn_cell_forward(xt, a_prev, parameters):

2 wl, w2, bl, b2, w3 = parameters["wl"], parameters["w2"], parameters][
"bl1"], parameters["b2"], parameters["w3"]

s a_next = np.tanh(np.dot(wl, xt) + np.dot(w2, a_prev) + bl)
yt_pred = softmax(np.dot(w3, a_next) + b2)

7 return a_next, yt_pred

2.4 Running Forward Pass for All Time Steps

We iterate over all time steps to compute the hidden states and predictions.

1 def run_forward(x, a0, parameters):

2 n_x, m, t_x = x.shape # Extract dimensions
3 n_y, n_a = parameters["w3"].shape
1

a = np.zeros((n_a, m, t_x))
6 y_pred = np.zeros((n_y, m, t_x))
7 a_next = a0

9 for i in range(t_x):
10 xt = x[:, :, i]
11 a_next, yt_pred = rnn_cell_forward(xt, a_next, parameters)

13 return a_next, y_pred

15 # Running forward pass
16 a_tmp, y_pred = run_forward(x_t, a_prev, parameters)

(5000, 5)
(231, 5)
(5000, 5)
(231, 5)
(5000, 5)
(231, b5)
(5000, 5)
(231, 5)
(5000, 5)
(231, 5)
(5000, 5)
(231, 5)

SkipGram & GloVe 2

N

T W

Minor in AI

(5000, 5)
(231, 5)
(5000, 5)
(231, 5)
(5000, 5)
(231, b5)
(5000, 5)
(231, 5)

3 Building a Deep RNN Using PyTorch

Now, we implement a multi-layer RNN using PyTorch.

3.1 Reading and Preprocessing Text

We use War and Peace as input data, preprocessing it into tokens.

import torch

import torch.nn as nn

import re

from collections import Counter

file_path = "War_and_Peace.txt"
with open(file_path, "r", encoding="utf-8") as f:
lines = f.read()

print ("sample text ->",lines[:100])
sample text —-> The Project Gutenberg eBook of War and Peace

This ebook is for the use of anyone anywhere in th

Preprocessing text

def pre_process_data(text):
text = text.lower ()
text = re.sub(r"["a-z\s]", "", text)
return text.split ()

tokens = pre_process_data(lines)
print ("sample Tokens ->",tokens[:10])

sample Tokens -> [’the’, ’project’, ’gutenberg’, ’ebook’, ’of’, ’war’,
’and’, ’peace’, ’this’, ’ebook’]

word_count = Counter (tokens)

vocab = sorted(word_count.keys ())

word_to_index = {word: i for i, word in enumerate (vocab)}
index_to_word = {i: word for i, word in enumerate (vocab)}

sample word to index -> [(’a’, 0), (Paah’, 1), (’ab’, 2), (’aback’, 3),
(’abacus’, 4), (’abandon’, 5), (’abandoned’, 6), (’abandoning’, 7),
(’abandonment’, 8), (’abandons’, 9)]

SkipGram & GloVe

1

)

Minor in AI

for i in range(10): # First 10 words of vocab
word = vocab[i]

Printing the corresponding words and their counts
print (word ,word_count [word])

a 10494

aah 1

ab 1

aback 3

abacus 1
abandon 25
abandoned 54
abandoning 26
abandonment 14
abandons 1

3.2 Creating Training Sequences

We define input sequences of length 5 and their corresponding targets.

seq_length = 5

def create_sequence (tokens, seq_length):

inputs, targets = [], []
for i in range(len(tokens) - seq_length):
seq_in = tokens[i:i + seq_length]

seq_out = tokens[i + seq_length]
inputs.append ([word_to_index [word] for word in seq_in])
targets.append(word_to_index[seq_out])

return inputs, targets

inputs, targets = create_sequence (tokens, 5)

print (inputs [0])
print (targets [0])

(17809, 13774, 7973, 5554, 12207]
19543

3.3 Defining the Deep RNN Model

A Deep Recurrent Neural Network (Deep RNN) is a type of neural network designed to
handle sequential data by stacking multiple RNN layers. This increases the network’s
ability to learn complex temporal patterns compared to a single-layer RNN.

Deep RNNs can capture long-term dependencies better and are widely used in tasks
such as:

e Natural Language Processing (NLP)
e Time Series Forecasting

e Speech Recognition

SkipGram & GloVe 4

Minor in AI

e Text Generation

The architecture consists of multiple recurrent layers stacked on top of each other. Each
layer processes sequential data and passes it to the next layer. The final layer produces
an output, typically a probability distribution over a vocabulary in NLP tasks.

1 # Define the Deep RNN class
class DeepRnn(nn.Module):

2
3
4

5

o] -~ =]

10

11

13

14

15

16

17

19

def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers):
super (DeepRnn, self).__init__()

Embedding layer to convert words into vector representations

self .embeddings = nn.Embedding(vocab_size, embed_dim)

Multi-layer RNN

self .rnn = nn.RNN(embed_dim, hidden_dim, num_layers, batch_first
=True)

Fully connected layer to map hidden states to vocabulary size
self.fc = nn.Linear (hidden_dim, vocab_size)

def forward(self, x):
Convert word indices into dense vectors
embeddings = self.embeddings (x)
Pass embeddings through RNN layers
output, hidden = self.rnn(embeddings)
Final output layer considers only the last time step output
output = self.fc(outputl:, -1, :1)
return output

The above implementation initializes a deep RNN with:

¢ An embedding layer to map words to dense vectors.
e A multi-layer RNN to capture temporal dependencies.

e A fully connected output layer that predicts the next word.

This model will be trained on a dataset such as ‘War and Peace’, preprocessed into
sequences of words. The training phase involves optimizing the network using gradient
descent.

4

Key Takeaways

. Deep RNNs improve sequential learning: Stacking multiple RNN layers en-

hances the model’s ability to capture complex patterns in sequential data.

. Embedding layers help with word representation: Words are mapped to

dense vectors before being processed by the RNN layers.

. Multi-layer RNNs capture long-term dependencies: The deep architecture

allows better learning of relationships over extended sequences.

. Training involves optimizing through backpropagation: Gradient descent

updates weights to minimize prediction errors over time.

. Deep RNNs have applications in NLP and beyond: They are widely used in

text generation, speech recognition, and time series forecasting.

Google Collab Link: Code Herel!!!

SkipGram & GloVe 5

https://colab.research.google.com/drive/1x-mf-vQH-lXhboDIM5aSSHJPzqUHtiEo?usp=sharing#scrollTo=tTQvjl6Zq32s

	Introduction
	Implementing an RNN Forward Pass in NumPy
	Initializing Data and Parameters
	Defining Softmax Function
	Implementing the RNN Cell Forward Pass
	Running Forward Pass for All Time Steps

	Building a Deep RNN Using PyTorch
	Reading and Preprocessing Text
	Creating Training Sequences
	Defining the Deep RNN Model

	Key Takeaways

