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The Journey of Understanding Word Embeddings

Imagine you’re in a small village, and the language spoken in this village is very simplistic. At first, there
are only a few words that the villagers know, and each word has a distinct meaning. Over time, more
complex concepts emerge, and people start talking about objects and actions that relate to one another.
For example, ”farmer” and ”cultivator” mean nearly the same thing, but ”farmer” and ”apple” are two
completely different things. At first, the villagers can only represent these words as unique symbols or
codes, which is like the process of one-hot encoding, where each word has a unique identifier.

However, over time, the villagers realize that ”farmer” and ”cultivator” are very much related, while
”farmer” and ”apple” are not. This observation leads them to develop a better way of representing
words: a representation that shows how words are related based on their meaning.

This breakthrough leads to a new representation system called word embeddings. With word
embeddings, words with similar meanings, like ”farmer” and ”cultivator,” will be closer in the vector
space, while unrelated words, like ”farmer” and ”apple,” will be farther apart. So instead of just assigning
random codes to words, this system represents words as vectors that capture their semantic meaning
based on context.

As more and more words are processed, and relationships between them are captured, the villagers

develop a much more powerful system of understanding language, where machines can not only represent

words numerically but also understand the relationships and meanings behind them.
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What Are Word Embeddings?

Word embeddings are a technique in Natural Language Processing (NLP) where words
or phrases are mapped to vectors of real numbers in a continuous vector space. Unlike
traditional methods like one-hot encoding, which represent words as binary vectors, word
embeddings capture the meaning of words by positioning them in a vector space where
semantically similar words are located closer together.

For example:

• ”King” and ”queen” are related in terms of royalty, so their vectors would be closer
in space.

• ”King” and ”apple” are unrelated, so their vectors would be farther apart.

Word embeddings are crucial because they allow machines to understand and perform
tasks like sentiment analysis, machine translation, and question answering with greater
accuracy.

Why Not Just Use One-Hot Encoding?

One-hot encoding was the simplest method used for word representation. In one-hot
encoding, each word in a vocabulary is represented as a vector where one element is 1
(the index of the word) and all other elements are 0. For example, if we have a vocabulary
size of 5 and the word ”apple” is the third word, its one-hot encoding might look like:

[”apple”] → [0, 0, 1, 0, 0]

This seems simple enough, but there’s a major flaw. One-hot vectors don’t capture any
semantic relationships between words. The one-hot vector for ”apple” is the same as for
”banana” or ”dog,” even though ”apple” and ”banana” are closely related. The one-hot
encoding for both words is orthogonal and does not reflect any real-world similarity.

For instance:

• ”Farmer” and ”Cultivator”: Both are related terms, but their one-hot encodings
will look completely different, leading to the conclusion that there is no similarity
between them.

• ”Farmer” and ”Apple”: These two words are semantically unrelated, but one-hot
encoding will also fail to capture this.

So, we needed something better—a technique that could capture word relationships
in a more meaningful way. This is where word embeddings come in.

Word Embeddings: Technical Breakdown

1. Word Embeddings as Dense Vectors

Word embeddings represent words as dense vectors in a continuous vector space. Instead
of using a sparse vector with just one ”1” and the rest ”0”s (like one-hot encoding), we
represent words with a dense vector where every element holds a real-valued number.

Let’s imagine that the word “king” is represented by a 3-dimensional vector, like so:

”king” → [0.5, 0.2,−0.3]
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This vector represents ”king” in a 3-dimensional space. However, in real-world appli-
cations, word embeddings typically use vectors of 100-1000 dimensions. These vectors
capture semantic properties of words.

2. The Power of Similarity: Cosine Similarity and Dot Product

One of the fundamental ideas in word embeddings is that words that are close in meaning
should have similar vector representations. To quantify the relationship between two
vectors, we use the dot product or cosine similarity.

For example, if we have the following vectors:

”king” → [0.4, 0.5,−0.1]

”queen” → [0.3, 0.7, 0.2]

The dot product (or cosine similarity) of these two vectors will yield a non-zero value,
indicating that ”king” and ”queen” are related. The closer the vectors are, the higher
the cosine similarity.

For vectors that are farther apart (e.g., ”king” and ”apple”), the cosine similarity will
be close to zero.

3. Skip-Gram and CBOW (Continuous Bag of Words)

Two common models used for learning word embeddings are Skip-Gram and CBOW
(Continuous Bag of Words).

• Skip-Gram Model: This model takes a word as input and tries to predict the
surrounding context words. For example, in the sentence “I want to drink a cup of
coffee,” the word “drink” might be used to predict words like “I,” “want,” “to,” “a,”
“cup,” “coffee.”

• CBOW Model: In contrast, CBOW takes a context of words as input and tries to
predict the target word. For example, for the context {“I,” “want,” “to,” “drink”},
CBOW will predict the word ”coffee”.

Both models work by mapping words to a dense vector and then optimizing the em-
beddings based on the prediction task using backpropagation.
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4. Mathematical Formulation

Given the simplicity of the Skip-Gram or CBOW architecture, the goal is to predict the
surrounding words in the context from a given word. This is typically formulated as a
softmax function, where we compute the probability of a target word given a context:

P (wtarget|wcontext) = softmax(wtarget · wcontext)

Where:

• wtarget is the vector representing the target word.

• wcontext is the vector representing the context.

The dot product of these vectors is passed through a softmax function to get a prob-
ability distribution. The model is then trained to minimize the difference between the
predicted word and the actual word using a loss function like cross-entropy loss.

5. Hierarchical Softmax and Negative Sampling

• Hierarchical Softmax: The softmax function becomes computationally expensive
as the vocabulary size grows, because it requires summing over all the words in the
vocabulary. To overcome this, hierarchical softmax organizes the words into a binary
tree and reduces the number of calculations needed.

• Negative Sampling: Negative sampling is another technique to optimize training.
Instead of updating the weights for every word in the vocabulary, the model only
updates the weights for the target word and a few random words (negative examples),
making training much faster.

6. Visualizing Word Embeddings

To understand the relationships between words, we can visualize word embeddings in a
2D or 3D space. t-SNE (t-distributed Stochastic Neighbor Embedding) is often used to
reduce the dimensions of the word vectors so that we can plot them.

For example, when visualizing a large set of word embeddings, we might see that words
related to royalty like ”king” and ”queen” are placed close together, while words related
to animals like ”dog” and ”cat” form another cluster.

7. Applications of Word Embeddings

• Sentiment Analysis: Word embeddings help capture the sentiment of text by
understanding the meaning of words in the context of sentences.

• Machine Translation: In machine translation, word embeddings can map words
from one language to another by representing them in a shared vector space.

• Question Answering: Word embeddings can help machines understand the rela-
tionships between words in questions and answers, enabling better responses.

• Named Entity Recognition (NER): Word embeddings can assist in recognizing
entities like names, places, or organizations in text, as they understand the context
in which these words appear.
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8. Transfer Learning and Fine-Tuning Word Embeddings

Word embeddings can be trained on large corpora (like Wikipedia or Project Gutenberg)
and then fine-tuned for specific tasks. This is called transfer learning. You can take pre-
trained embeddings (like Word2Vec or GloVe) and apply them to new tasks with your
own data without needing to train them from scratch.

For example, fine-tuning a word embedding trained on general text can make it more
specific to a domain, like medical or legal language, by training it further on domain-
specific text.

Key Takeaways

• Word embeddings are a technique in NLP where words are mapped to vectors of
real numbers in a continuous vector space.

• Unlike one-hot encoding, word embeddings capture the meaning of words by po-
sitioning similar words closer together in the vector space.

• Word embeddings enable tasks like sentiment analysis, machine translation,
and question answering with greater accuracy.

• One-hot encoding assigns each word a unique index in a vector, but it does not
capture semantic relationships between words.

• Word embeddings represent words as dense vectors in a continuous vector space,
where each element is a real-valued number.

• Cosine similarity and dot product are used to measure the relationship between
word vectors.

• Skip-Gram and CBOW (Continuous Bag of Words) are common models used
to learn word embeddings.

• Word embeddings are typically learned using a softmax function to predict a
target word given a context.

• Hierarchical softmax and negative sampling optimize training by reducing the
computational cost and focusing on relevant words.

• Word embeddings can be visualized using techniques like t-SNE to reveal clusters
of related words.

• Applications of word embeddings include sentiment analysis, machine transla-
tion, question answering, and named entity recognition (NER).

• Transfer learning allows pre-trained word embeddings to be fine-tuned for specific
tasks, making them adaptable to different domains.
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