
Understanding RNNs and Vanishing Gradient

Minor in AI - IIT ROPAR

12th March, 2025

The Story of Rahul – The News Analyst

Rahul is a news analyst working for a media company. Every day, he reads hundreds of news
articles and needs to summarize them for the company’s daily bulletin.

One day, his boss gives him a tough assignment: “Rahul, I want you to prepare a summary of the
entire week’s news. The summary should highlight the key events and trends we have observed.”

Rahul starts working but faces a major problem:

• He remembers yesterday’s news very clearly.

• He can recall the news from two days ago with some effort.

• But the news from five days ago? The details are hazy.

• And the news from the start of the week? Almost completely forgotten!

His brain is prioritizing recent news, but forgetting past events, even though they are crucial
for understanding long-term trends. This is analogous to what happens in Recurrent Neural
Networks (RNNs).

1



Minor in AI

How RNNs Process Sequences

A Recurrent Neural Network (RNN) is a type of neural network designed to handle sequential data.
Unlike traditional feedforward networks, RNNs maintain a hidden state that helps retain information
from previous time steps.

Mathematical Formulation

At each time step t, the RNN computes the hidden state using:

ht = tanh(Whht−1 +Wxxt + bh) (1)

where:

• xt = input at time step t

• ht−1 = hidden state from the previous step

• Wh,Wx = weight matrices

• bh = bias term

• tanh = activation function

The final output is computed as:

yt = Wyht + by (2)

where yt is the predicted output at time step t.

The Vanishing Gradient Problem

Just like Rahul struggles to remember older news, RNNs face a memory problem. When training an
RNN using Backpropagation Through Time (BPTT), we propagate errors backward through time.
However:

• The model updates earlier layers using gradients.

• If the sequence is too long, these gradients become extremely small.

• Small gradients mean the network stops learning from earlier words.

• The oldest information is effectively lost.

Mathematically, this happens because:



Minor in AI

• At each step, the gradient is multiplied by the derivative of the activation function (usually
a value between 0 and 1).

• Multiplying small numbers repeatedly leads to an exponential decrease in gradient values.

• This means that after many steps, the gradients become so small that the model cannot learn
anything from earlier inputs.

Solutions to the Vanishing Gradient Problem

To address this problem, advanced RNN architectures introduce mechanisms to retain information over
long sequences.

Gated Recurrent Units (GRU)

GRUs introduce gates that control what information is remembered or forgotten. This helps in
preserving long-term dependencies without vanishing gradients.

Long Short-Term Memory (LSTM)

LSTMs take this further by storing information in a memory cell and using:

• Forget Gate – Decides what to erase.

• Input Gate – Decides what new information to store.

• Output Gate – Decides what to send as output.

Attention Mechanisms

Attention mechanisms dynamically focus on relevant words in a sentence. Instead of relying on fixed-
length memory, they scan all words and pick the most important ones.

Python Implementation of RNN Forward Propagation

We now implement the forward propagation of an RNN using Python. The goal is to process sequential
input data and predict outputs over multiple time steps.

Code Implementation

1 import numpy as np

2

3 np.random.seed (182)

4

5 # Initializing input data

6 x_t = np.random.randn (5000 ,5 ,10) # Shape: (vocab size , batch size , time steps)

7

8 a_prev = np.random.randn (231 ,5) # Initial hidden state (hidden state size , batch size)

9

10 # Defining parameters

11 parameters = {}

12 parameters["w1"] = np.random.randn (231 ,5000) # Weight matrix for input

13 parameters["w2"] = np.random.randn (231 ,231) # Weight matrix for hidden state

14 parameters["b1"] = np.random.randn (231 ,1) # Bias for hidden state

15 parameters["b2"] = np.random.randn (5000 ,1) # Bias for output

16 parameters["w3"] = np.random.randn (5000 ,231) # Weight matrix for output

17

18 def softmax(x):

19 return np.exp(x)/np.sum(np.exp(x), axis =0)

20

21 # Forward propagation for a single time step

22 def rnn_cell_forward(xt , a_prev , parameters):

23 w1 = parameters["w1"]



Minor in AI

24 w2 = parameters["w2"]

25 b1 = parameters["b1"]

26 b2 = parameters["b2"]

27 w3 = parameters["w3"]

28

29 # Compute the next hidden state

30 a_next = np.tanh(np.dot(w1, xt) + np.dot(w2 , a_prev) + b1)

31

32 # Compute output prediction

33 yt_pred = softmax(np.dot(w3 , a_next) + b2)

34

35 return a_next , yt_pred

36

37 # Forward propagation through all time steps

38 def run_forward(x, a0 , parameters):

39 n_x , m, t_x = x.shape # Extract input dimensions

40 n_y , n_a = parameters["w3"]. shape # Extract output and hidden state dimensions

41

42 a_next = a0

43

44 for i in range(t_x):

45 xt = x[:,:,i]

46 a_next , yt_pred = rnn_cell_forward(xt, a_next , parameters)

47

48 return a_next , yt_pred

49

50 # Running the RNN

51 a_tmp , y_pred = run_forward(x_t , a_prev , parameters)

Step-by-Step Explanation

• Initialization:

– xt represents the input data with dimensions (vocab size, batch size, time steps).

– aprev is the initial hidden state.

– The parameters dictionary stores weights and biases used in forward propagation.

• Softmax Function

– Converts raw output scores into probabilities to ensure numerical stability and interpretability.

• rnn cell forward Function

– Computes the next hidden state at using weight matrices and biases.

– Applies the ‘tanh‘ activation function to regulate values within a range.

– Predicts the output probability using softmax.

• run forward Function

– Iterates over all time steps to process the entire input sequence.

– Calls ‘rnn cell forward‘ at each time step to update the hidden state.

Key Takeaways

• RNNs are designed for sequential data such as time-series forecasting, speech recognition,
and natural language processing. Unlike feedforward networks, they maintain a hidden state to
capture temporal dependencies.

• Mathematically, RNNs update their hidden state using the equation:

ht = tanh(Whht−1 +Wxxt + bh)

and compute output as:
yt = Wyht + by

where Wh,Wx,Wy are weight matrices, and bh, by are biases.



Minor in AI

• The Vanishing Gradient Problem hinders learning from long sequences because gradients
shrink exponentially during backpropagation. This prevents the model from retaining long-term
dependencies, making it ineffective for complex tasks.

• Solutions such as GRU, LSTM, and Attention Mechanisms address vanishing gradients.
GRUs introduce gates to regulate memory, LSTMs add a dedicated memory cell, and Attention
allows dynamic focus on relevant words.

• The Python implementation of RNN forward propagation demonstrates how sequences
are processed through matrix operations. The core steps involve computing hidden states, ap-
plying activation functions, and generating predictions using softmax.

• RNNs, despite their limitations, form the foundation for advanced models like Trans-
formers that leverage self-attention for better long-range dependency handling.


