
Minor in AI
Sequence Modelling

NLP Pipeline

March 11, 2025



Minor in AI

1 Problem with RNNs

Recurrent Neural Networks (RNNs) process text sequentially, meaning they predict out-
puts one word at a time based only on previous words. However, some tasks, like Named
Entity Recognition (NER), require looking at future words to make correct classifications.
This limitation is evident in the given example.

Sentence 1:

Teddy Roosevelt was the president of USA.

Teddy Roosevelt was the president of USA.
1 1 0 0 0 0 1

Here, “Teddy Roosevelt” refers to a person, and both words are correctly labeled as
named entities (1 for “Teddy” and “Roosevelt”). The entity can be recognized by seeing
the second word (“Roosevelt”), confirming that “Teddy” in this case is a name.

Sentence 2:

Teddy Bears are for Sale in Big Bazaar.

Teddy Bears are for Sale in Big Bazaar.
0 0 0 0 0 0 1

Here, “Teddy” does not refer to a person; instead, “Teddy Bears” is a noun phrase
referring to stuffed toys. However, if the model sees only “Teddy” initially, it may mis-
takenly classify it as a person. The correct classification (0 for “Teddy” and “Bears”) can
only be determined if the model looks ahead to see “Bears”.

Key Issue with RNNs

• RNNs process words in order and lack the ability to see future words while making
predictions.

• In Sentence 2, an RNN might wrongly classify “Teddy” as a named entity because
it does not know that “Bears” follows.

• This limitation arises because RNNs work with only past information, making
them ineffective in cases where future context is crucial.

To resolve this issue, models like Bidirectional RNNs (BiRNNs) or Transformers (e.g.,
BERT) are used, as they incorporate both past and future context when making predic-
tions.

The process of training a neural network involves updating its weights using backprop-
agation. This document explains how weight updates happen using the given diagram.

Sequence Modelling 1



Minor in AI

Figure 1: Training Workflow

2 How to update the weights?

2.1 Feedforward Pass

During the feedforward pass:

• The input vector x = (x1, x2, . . . , xn) propagates through the network.

• Each neuron activation is computed as:

ai = f(Wiai−1 + bi)

where f is the activation function.

• The final layer produces an output ŷ, which is compared with the true value y.

2.2 Loss Computation

The error between the predicted output ŷ and the true label y is calculated using a loss
function L, such as Mean Squared Error (MSE) or Cross-Entropy Loss.

2.3 Backpropagation (Gradient Calculation)

The loss is propagated backward through the network:

• Compute the gradient of the loss with respect to the weights:

∂L

∂Wi

Sequence Modelling 2



Minor in AI

• Update the weights using gradient descent:

Wi ← Wi − η
∂L

∂Wi

where η is the learning rate.

This process ensures that the model learns optimal weights, improving its accuracy
over multiple iterations.

3 Binary Cross-Entropy Loss – BCELoss

Binary Cross-Entropy (BCE) is a widely used loss function for binary classification tasks.
It measures the difference between two probability distributions, often used in logistic
regression and neural networks for classification.

3.1 Mathematical Formulation

Given a dataset with N samples, where each sample has:

• True label yi ∈ {0, 1}

• Predicted probability ŷi (output of a sigmoid function)

The Binary Cross-Entropy (BCE) Loss is defined as:

L = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

Explanation

• If yi = 1, the loss simplifies to − log(ŷi), meaning we penalize low predicted proba-
bilities for the positive class.

• If yi = 0, the loss simplifies to − log(1 − ŷi), meaning we penalize high predicted
probabilities for the negative class.

• The logarithm ensures that predictions close to the true label have a lower penalty,
whereas incorrect predictions are penalized heavily.

3.2 Implementation in Python

The BCE loss function is implemented in deep learning frameworks such as TensorFlow
and PyTorch:

3.2.1 PyTorch Implementation

import torch.nn as nn

bce_loss = nn.BCELoss()

Sequence Modelling 3



Minor in AI

3.2.2 TensorFlow/Keras Implementation

from tensorflow.keras.losses import BinaryCrossentropy

bce_loss = BinaryCrossentropy()

3.3 Derivative of BCE

To update the weights during backpropagation, we compute the derivative of BCE with
respect to ŷi:

∂L

∂ŷi
= −yi

ŷi
+

(1− yi)

(1− ŷi)

Binary Cross-Entropy is an effective loss function for binary classification, ensuring
better learning by penalizing incorrect predictions heavily while rewarding correct ones.

4 NLP Pipeline

This document explains the text preprocessing steps using Python’s nltk (Natural Lan-
guage Toolkit). We demonstrate key techniques such as:

• Tokenization (splitting text into words and sentences)

• Part-of-Speech (POS) tagging

• Text normalization (lowercasing, stemming, lemmatization)

• Stopword and punctuation removal

4.1 Step 1: Loading the Input

We begin by reading the text file The Time Machine.txt.

1 # Step 1: Loading the input

2 with open("The_Time_Machine.txt", "r", encoding="utf -8") as f:

3 lines = f.read()

4

5 # Display the first 100 characters

6 lines [:100]

4.2 Step 2: Tokenization

Tokenization involves breaking down text into individual words and sentences.

1 # Step 2: Tokenization

2 import nltk

3 nltk.download("punkt_tab")

4 from nltk.tokenize import word_tokenize , sent_tokenize

5

6 # Sentence and word tokenization

7 sentences = sent_tokenize(lines)

8 words = word_tokenize(lines)

9

Sequence Modelling 4



Minor in AI

10 print(len(sentences)) # Number of sentences

11 print(len(words)) # Number of words

[nltk_data] Downloading package punkt_tab to /root/nltk_data...

[nltk_data] Unzipping tokenizers/punkt_tab.zip.

1945

41001

1 # Display first three sentences

2 for i in range (3):

3 print(sentences[i])

4 print("--------------")

The Project Gutenberg eBook of The Time Machine

This ebook is for the use of anyone anywhere in the United States and

most other parts of the world at no cost and with almost no restrictions

whatsoever.

--------------

You may copy it, give it away or re-use it under the terms

of the Project Gutenberg License included with this ebook or online

at www.gutenberg.org.

--------------

If you are not located in the United States,

you will have to check the laws of the country where you are located

before using this eBook.

--------------

1 # Display first 50 words

2 for i in range (50):

3 print(words[i])

4 print("----------")

The

----------

Project

----------

Gutenberg

----------

eBook

----------

of

----------

The

----------

Time

----------

Machine

----------

Sequence Modelling 5



Minor in AI

This

----------

ebook

----------

is

----------

for

----------

the

----------

use

----------

of

----------

anyone

----------

anywhere

----------

in

----------

the

----------

United

----------

States

----------

and

----------

most

----------

other

----------

parts

----------

of

----------

the

----------

world

----------

at

----------

no

----------

cost

----------

and

----------

Sequence Modelling 6



Minor in AI

with

----------

almost

----------

no

----------

restrictions

----------

whatsoever

----------

.

----------

You

----------

may

----------

copy

----------

it

----------

,

----------

give

----------

it

----------

away

----------

or

----------

re-use

----------

it

----------

under

----------

4.3 Step 3: Part-of-Speech (POS) Tagging

POS tagging assigns grammatical categories (noun, verb, adjective, etc.) to each word.

1 # Step 3: Part of Speech tagging

2 nltk.download("averaged_perceptron_tagger_eng")

3 nltk.pos_tag(words [10:25]) # POS tagging for a sample of words

[nltk_data] Downloading package averaged_perceptron_tagger_eng to

[nltk_data] /root/nltk_data...

[nltk_data] Package averaged_perceptron_tagger_eng is already up-to-

[nltk_data] date!

Sequence Modelling 7



Minor in AI

[(‘is’, ‘VBZ’),

(‘for’, ‘IN’),

(‘the’, ‘DT’),

(‘use’, ‘NN’),

(‘of’, ‘IN’),

(‘anyone’, ‘NN’),

(‘anywhere’, ‘RB’),

(‘in’, ‘IN’),

(‘the’, ‘DT’),

(‘United’, ‘NNP’),

(‘States’, ‘NNPS’),

(‘and’, ‘CC’),

(‘most’, ‘JJS’),

(‘other’, ‘JJ’),

(‘parts’, ‘NNS’)]

4.4 Step 4: Text Normalization

Text normalization involves:

• Lowercasing (converting all letters to lower case)

• Stemming (reducing words to their root forms, sometimes non-meaningful)

• Lemmatization (reducing words to their dictionary form)

Figure 2: Stemming vs Lemmatization P.C. : Turing

Figure 3: Few Examples P.C. : StudyML

Sequence Modelling 8

https://www.turing.com/kb/stemming-vs-lemmatization-in-python
https://studymachinelearning.com/stemming-and-lemmatization/


Minor in AI

4.4.1 Lowercasing

1 # Lowercasing the text

2 lower_text = lines.lower ()

3 print(lines [25:35]) # Before lowercasing

4 print(lower_text [25:35]) # After lowercasing

ook of The

ook of the

4.4.2 Stemming

Stemming reduces words to their base form but may produce non-meaningful words.

1 from nltk.stem import PorterStemmer

2

3 ps = PorterStemmer ()

4 stemmed_words = [ps.stem(word) for word in words]

5

6 print(words [35:45]) # Original words

7 print(stemmed_words [35:45]) # Stemmed words

[‘restrictions’, ‘whatsoever’, ‘.’, ‘You’, ‘may’, ‘copy’, ‘it’, ‘,’, ‘give’, ‘it’]

[‘restrict’, ‘whatsoev’, ‘.’, ‘you’, ‘may’, ‘copi’, ‘it’, ‘,’, ‘give’, ‘it’]

4.4.3 Lemmatization

Lemmatization provides dictionary-based word forms, preserving meaning.

1 nltk.download("wordnet")

2 from nltk.stem import WordNetLemmatizer

3

4 lemmatizer = WordNetLemmatizer ()

5 lemmatized_words = [lemmatizer.lemmatize(word) for word in stemmed_words

]

6

7 # Display words where lemmatization changed the stemmed form

8 for i in range(len(stemmed_words)):

9 if stemmed_words[i] != lemmatized_words[i]:

10 print(stemmed_words[i], lemmatized_words[i])

us u

pass pas

us u

us u

as a

us u

as a

as a

as a

as a

laps lap

as a

Sequence Modelling 9



Minor in AI

as a

as a

as a

us u

pass pas

as a

as a

feet foot

as a

us u

us u

us u

as a

us u

...

[nltk_data] Downloading package wordnet to /root/nltk_data...

[nltk_data] Package wordnet is already up-to-date!

4.5 Step 5: Stopwords and Punctuation Removal

Stopwords (common words like the, is, in) and punctuation are removed to enhance text
quality.

1 from nltk.corpus import stopwords

2 nltk.download("stopwords")

3

4 stop_words = set(stopwords.words("english"))

5

6 # Remove stopwords

7 filtered_words = [word for word in lemmatized_words if word.lower() not

in stop_words]

8

9 print(len(lemmatized_words)) # Before filtering

10 print(len(filtered_words)) # After filtering

41001

23768

[nltk_data] Downloading package stopwords to /root/nltk_data...

[nltk_data] Unzipping corpora/stopwords.zip.

Key Takeaways

• Binary Cross-Entropy (BCE) Loss: Used for binary classification, it penalizes
incorrect predictions using the formula:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

ensuring stable training with a small ϵ to avoid log(0) errors.

Sequence Modelling 10



Minor in AI

• Training the Network: Involves forward propagation to compute loss and back-
propagation to update weights using optimizers like SGD or Adam, with techniques
such as dropout and L2 regularization for stability.

• Problems with RNN in Sequence Modeling: Struggles with long-term de-
pendencies due to vanishing/exploding gradients, has inefficient parallelization, and
limited memory retention; LSTMs and GRUs mitigate these issues.

• NLP Pipeline: Includes text preprocessing (tokenization, stemming, stopword
removal), feature extraction (TF-IDF, Word2Vec), and model training using deep
learning architectures like LSTMs and transformers.

Google Collab Link : Code Here!!!

Sequence Modelling 11

https://colab.research.google.com/drive/1x-mf-vQH-lXhboDIM5aSSHJPzqUHtiEo?usp=sharing#scrollTo=eUXJcb2U9tmL

	Problem with RNNs
	How to update the weights?
	Feedforward Pass
	Loss Computation
	Backpropagation (Gradient Calculation)

	Binary Cross-Entropy Loss – BCELoss
	Mathematical Formulation
	Implementation in Python
	PyTorch Implementation
	TensorFlow/Keras Implementation

	Derivative of BCE

	NLP Pipeline
	Step 1: Loading the Input
	Step 2: Tokenization
	Step 3: Part-of-Speech (POS) Tagging
	Step 4: Text Normalization
	Lowercasing
	Stemming
	Lemmatization

	Step 5: Stopwords and Punctuation Removal


