
Understanding N-grams

Minor in AI - IIT ROPAR

5th March, 2025

The Cryptic Manuscript: Unraveling Hidden Patterns in Ancient
Texts

Imagine you are a detective trying to decipher a mysterious message hidden within an ancient manuscript.
The manuscript is filled with thousands of words, and your task is to uncover patterns in how these
words appear together. This is no ordinary text—it holds secrets that can only be revealed by carefully
analyzing its structure.

To break down the message, you start by examining individual words, counting how often each
appears. This method is called a unigram analysis. But a single word alone may not reveal much, so
you move to the next step—looking at pairs of words that frequently appear together. These are called
bigrams, and they help you understand relationships between words. Taking it a step further, you begin
analyzing sequences of three words, known as trigrams, to see if a deeper pattern emerges.

By studying the frequency and order of these word sequences, you can predict which words are
likely to follow others. This technique is widely used in text analysis, machine translation, and speech
recognition. Whether you are deciphering an ancient manuscript or training an AI to understand human
language, recognizing these hidden structures brings you one step closer to unlocking the true meaning
of the text.

1



Minor in AI

What is an N-Gram?

An N-Gram is a continuous sequence of N items (words or characters) from a given text. In Natural
Language Processing (NLP), N-Grams help analyze and understand patterns in text, which is useful for
text prediction, speech recognition, machine translation, sentiment analysis, and many other applications.

Breaking Down N-Grams with an Example

Consider the sentence:

“I love machine learning”

• Unigrams (N = 1): {I, love, machine, learning}

• Bigrams (N = 2): {I love, love machine, machine learning}

• Trigrams (N = 3): {I love machine, love machine learning}

• 4-Grams (N = 4): {I love machine learning}

If N increases further, we get longer phrases, but they appear less frequently in real text.

Why are N-Grams Useful?

Text Prediction (Auto-Complete & Spell Correction)

• If you type “How are”, the model suggests “you?” based on frequent bigrams.

• If a sentence has a typo, the model predicts the correct word using common N-Grams.

Speech Recognition

If you say “I need a glass of...”, the system predicts “water” based on common trigrams.

Machine Translation

Instead of translating word-by-word, modern translation systems use N-Grams to understand sentence
structure.

Sentiment Analysis

Identifying common bigrams and trigrams helps detect sentiment:

• “not happy” (bigram) and “really bad experience” (trigram) often indicate negativity.

Text Classification & Spam Detection

Certain N-Grams are common in spam messages, e.g., “Win a free iPhone” (trigram). Spam filters use
N-Grams to identify and block unwanted emails.

Types of N-Grams

Word N-Grams

Definition: A sequence of N words.
Example (N = 3): “The quick brown fox” → {The quick brown, quick brown fox}.

Character N-Grams

Definition: A sequence of N characters (ignoring word boundaries).
Example (N = 3) for “hello”: {hel, ell, llo}.



Minor in AI

N-Gram Type Pros Cons

Unigrams (N=1) Simple, useful for bag-of-words models Lacks context
Bigrams (N=2) Captures some word relationships Doesn’t capture long-term dependencies
Trigrams (N=3) Understands phrases better Needs more data to be effective
4-Grams & Above Very context-rich Requires huge amounts of text and computation

Choosing the Right N for N-Grams

Probabilities in N-Grams (Markov Assumption)

The probability of a word appearing is given by:

P (wn|wn−1) =
count(wn−1, wn)

count(wn−1)
(1)

For example: If “machine learning” appears 50 times, and “machine” appears 200 times, then:

P (learning|machine) =
50

200
= 0.25 (2)

Using trigram probabilities:

P (wn|wn−2, wn−1) =
count(wn−2, wn−1, wn)

count(wn−2, wn−1)
(3)

Now, let’s break down the Python code that performs N-gram analysis on
H.G. Wells’ novel The Time Machine step by step.

Step 1: Reading and Preprocessing the Text

with open("The_Time_Machine.txt", "r", encoding="utf -8") as f:

lines = f.read()

We open the text file in read mode with UTF-8 encoding to ensure all characters are read correctly.

Step 2: Converting Text to Lowercase and Removing Punctuation

import re

lines = lines.lower()

lines = re.sub(r"[^a-z\s]", "", lines)

• Converts text to lowercase so that ”Time” and ”time” are treated the same.

• Removes punctuation, numbers, and special characters, keeping only lowercase letters and spaces.

Step 3: Tokenization and Vocabulary Building

tokens = lines.split ()

vocabulary = set(tokens)

• Splits text into words (tokens) by spaces.

• Extracts unique words into a vocabulary set.



Minor in AI

Step 4: Counting Word Frequencies

from collections import Counter

word_freq = Counter(tokens)

for i in word_freq.most_common (5):

print(i)

- Counts the frequency of each word and prints the top 5 most common words.

Expected Output

(’the’, 2468)
(’and’, 1296)
(’of’, 1281)
(’i’, 1242)
(’a’, 864)

Step 5: Sorting Word Frequencies for Visualization

sorted_word_freq = dict(sorted(word_freq.items(), key=lambda item: item[1], reverse=True

))

word = list(sorted_word_freq.keys())[:50]

freq = list(sorted_word_freq.values ())[:50]

- Sorts the dictionary in descending order of frequency and extracts the top 50 words and their frequencies.

Step 6: Visualizing Word Frequency

import matplotlib.pyplot as plt

plt.figure(figsize =(10 ,5))

plt.bar(word , freq)

plt.xticks(rotation =90)

plt.xlabel("Words")

plt.ylabel("Frequency")

plt.title("Word Frequency")

plt.show()

- Generates a bar chart showing the frequency of the 50 most common words.



Minor in AI

Step 7: Defining the N-gram Generator

def generate_ngrams(tokens , n):

return [" ".join(tokens[i:i+n]) for i in range(len(tokens)-n+1)]

- Generates N-grams as sequences of words instead of concatenated strings.

Step 8: Creating Unigrams, Bigrams, and Trigrams

unigram = tokens

bi_gram = generate_ngrams(tokens , 2)

tri_gram = generate_ngrams(tokens , 3)

- Stores individual words, two-word sequences, and three-word sequences.

Step 9: Counting N-gram Frequencies

unigram_freq = Counter(unigram)

bi_gram_freq = Counter(bi_gram)

tri_gram_freq = Counter(tri_gram)

- Counts occurrences of unigrams, bigrams, and trigrams.

Step 10: Sorting N-gram Frequencies

unigram_sorted = sorted(unigram_freq.values (), reverse=True)

bi_gram_sorted = sorted(bi_gram_freq.values (), reverse=True)

tri_gram_sorted = sorted(tri_gram_freq.values (), reverse=True)

- Sorts frequency values in descending order.

Step 11: Plotting N-gram Frequencies on a Log-Log Scale

plt.figure(figsize =(15 ,6))

plt.plot(unigram_sorted , label="Unigram", marker=’o’, linestyle=’--’)

plt.plot(bi_gram_sorted , label="Bi-gram", marker=’x’, linestyle=’--’)

plt.plot(tri_gram_sorted , label="Tri -gram", marker=’s’, linestyle=’--’)

plt.yscale(’log’)

plt.xscale(’log’)

plt.xlabel("N-grams")

plt.ylabel("Frequency")

plt.title("N-gram Frequency")

plt.legend ()

plt.show()

• Uses a log-log plot since word frequencies follow Zipf’s Law, where a few words are common while
most are rare.

• Different markers (‘o‘, ‘x‘, ‘s‘) represent unigram, bigram, and trigram counts.



Minor in AI

Challenges with N-Grams

Data Sparsity

Many trigrams and higher N-Grams occur rarely, making it hard to learn probabilities.
Solution: Smoothing techniques like Laplace Smoothing help assign nonzero probabilities to unseen
words.

High Memory & Computation Cost

Storing bigram or trigram probabilities for large corpora is expensive.
Solution: Neural language models (e.g., GPT, LSTMs) overcome this by learning word embeddings.

Lack of Long-Range Dependencies

A trigram model can’t understand dependencies between words far apart in a sentence.
Solution: Transformers (like GPT-3) use attention mechanisms to capture long-term dependencies.

Key Takeaways

• An N-Gram is a sequence of N words appearing together in a text. Unigrams are single words,
bigrams are two-word sequences, and trigrams are three-word sequences. Higher-order N-Grams
improve contextual understanding but require significantly more data.

• N-Grams are widely used in text prediction, such as autocomplete and spell-checking, where
bigrams and trigrams help predict the next word. They also play a crucial role in speech recog-
nition by suggesting words based on common sequences. Inmachine translation, N-Grams assist
in structuring translated sentences more accurately by identifying frequent word combinations.

• In sentiment analysis, certain bigrams and trigrams help detect positive or negative sentiment,
such as “not happy” or “really bad experience”. Similarly, in spam detection, common spam
phrases like “win a free iPhone” can be identified using N-Gram analysis.


