
Minor in AI
Sequence Modelling

Auto-Regressive Models & Text Processing

March 04, 2025

Minor in AI

1 Introduction

Time series forecasting is an essential area of statistical modeling. Auto-Regressive (AR)
models are a fundamental class of models for predicting future values based on past
observations. In this document, we discuss AR(p) models, explore AR(1) in detail, and
link them to Markov Chains. We will also compare sequences that fit into these models
and analyze how they differ.

2 Auto-Regressive (AR) Models

An Auto-Regressive (AR) model of order p, denoted as AR(p), is a time series model
where the current value depends linearly on its past p values:

Xt = c+

p∑
i=1

ϕiXt−i + εt

where ϕi are the model parameters and εt is white noise.

2.1 The AR(1) Model

A special case is AR(1):
Xt = ϕXt−1 + εt

which implies that the current value only depends on the immediate past value.

2.2 Connection to Markov Chains

An AR(1) model can be linked to a first-order Markov process, where the next state
only depends on the current state.

A Markov Chain is defined by transition probabilities:

P (Xt+1|Xt)

and can be represented using a transition matrix.

3 Sequence Data

Sequence data refers to ordered data points collected over time or space, where the order
of occurrence is crucial for understanding patterns, dependencies, and predictions. It is
widely used in various domains, such as time-series analysis, natural language processing
(NLP), and bioinformatics.

3.1 Characteristics of Sequence Data

• Ordered Structure – Each element in the sequence follows a specific order, making
the position of data points essential.

• Temporal or Spatial Dependency – The value of a data point is often dependent
on previous values.

• Variable Length – Some sequences have fixed lengths (e.g., DNA sequences), while
others can be dynamic (e.g., financial stock prices).

Revision 1

Minor in AI

3.2 Types of Sequence Data

1. Time-Series Data
A series of data points indexed in time order.
Example: Daily stock prices, weather temperature recordings.

2. Text Sequences
A sequence of words, sentences, or characters used in NLP.
Example: Sentences in a paragraph.

3. Genomic Sequences
A sequence of nucleotides (A, T, G, C) representing DNA.

4. Sequential Clickstream Data
User interactions on a website over time.

5. Event-based Sequences
Logs of user activities or system operations in chronological order.

Example:

A temperature recording over 10 days:

T = 30.5, 31.2, 29.8, 30.1, 30.7, 31.0, 29.9, 30.3, 30.8, 31.1

Time series can be categorized into:

• Autoregressive Sequences: Depend on past values (e.g., AR models).

• Markovian Sequences: Depend only on the current state.

Example: Stock prices follow an AR process, whereas a random walk is a Markov
process.

4 Code Implementation

4.1 Generating a Synthetic Time Series

We first generate a synthetic temperature dataset that exhibits seasonal patterns with
random noise.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # Set random seed for reproducibility

5 np.random.seed (182)

6

7 # Generate days and temperature data with seasonal variation and noise

8 days = np.arange (1 ,101)

9 temperature = 25 + 0.5 * np.sin (0.1* days) + np.random.normal (0,0.5, size

=100)

10

11 # Plot the temperature data

12 plt.plot(days , temperature , label=’Temperature Variation ’)

13 plt.xlabel(’Days’)

Revision 2

Minor in AI

14 plt.ylabel(’Temperature ’)

15 plt.title(’Synthetic Temperature Data’)

16 plt.legend ()

17 plt.show()

4.2 Creating AR(p) Model Inputs

To build an AR(p) model, we construct feature vectors from past observations.

1 p = 3 # Number of past observations to use

2

3 # Prepare feature matrix X and target vector y

4 X, y = [], []

5 for i in range(len(temperature) - p):

6 X.append(temperature[i:i+p]) # Take past ’p’ values

7 y.append(temperature[i+p]) # Target value is the next observation

8

9 X, y = np.array(X), np.array(y)

10

11 print("Feature matrix shape:", X.shape)

12 print("Target vector shape:", y.shape)

Feature matrix shape: (97, 3)

Target vector shape: (97,)

4.3 Training an AR(3) Model

We use the least squares method to estimate the coefficients of an AR(3) model.

1 from sklearn.metrics import mean_squared_error

2

3 # Splitting data into training and testing sets

4 X_train , X_test = X[:80] , X[80:]

5 y_train , y_test = y[:80] , y[80:]

6

7 # Add bias term for intercept

8 X_train_with_bias = np.c_[np.ones(X_train.shape [0]), X_train]

9 X_test_with_bias = np.c_[np.ones(X_test.shape [0]), X_test]

10

Revision 3

Minor in AI

11 # Compute least squares solution

12 coeff = np.linalg.lstsq(X_train_with_bias , y_train , rcond=None)[0]

13 print("Estimated coefficients:", coeff)

14

15 # Predict on test data

16 y_pred = X_test_with_bias @ coeff

17 mse = mean_squared_error(y_test , y_pred)

18 print("Mean Squared Error:", mse)

19

20 # Plot actual vs. predicted values

21 plt.figure(figsize =(10 ,6))

22 plt.plot(range(len(y_test)), y_test , label=’Actual ’, marker=’o’)

23 plt.plot(range(len(y_pred)), y_pred , label=’Predicted ’, marker=’+’)

24 plt.xlabel("Days")

25 plt.ylabel("Temperature")

26 plt.title("Temperature Prediction with AR(3)")

27 plt.legend ()

28 plt.show()

Estimated coefficients: [10.36153868 0.29757698 -0.08728726 0.37726841]

Mean Squared Error: 0.21713134375598753

4.4 Linking AR(1) to Markov Chains

An AR(1) model can be rewritten as:

Xt = ϕXt−1 + ϵt (1)

This form shows that the next state depends only on the current state, similar to a
first-order Markov Chain.

1 from sklearn.linear_model import LinearRegression

2

3 X_ar1 = temperature [: -1]. reshape (-1,1) # AR(1) uses only previous value

4 y_ar1 = temperature [1:]

5

6 # Split data into training and testing

7 train_X_ar1 , test_X_ar1 = X_ar1 [:80] , X_ar1 [80:]

8 train_y_ar1 , test_y_ar1 = y_ar1 [:80] , y_ar1 [80:]

9

10 # Fit linear regression model for AR(1)

Revision 4

Minor in AI

11 model = LinearRegression ()

12 model.fit(train_X_ar1 , train_y_ar1)

13

14 y_pred_ar1 = model.predict(test_X_ar1)

15 mse_ar1 = mean_squared_error(test_y_ar1 , y_pred_ar1)

16 print("Mean Squared Error for AR(1):", mse_ar1)

Mean Squared Error for AR(1): 0.2343436817353426

4.5 Markov Chain Transition Probabilities

We now convert the temperature values into discrete states and compute the transition
probabilities.

1 from collections import defaultdict

2

3 discrete_temp = np.round(temperature).astype(int)

4 transition_counts = defaultdict(lambda: defaultdict(int))

5

6 # Count transitions from one state to another

7 for i in range(len(discrete_temp) - 1):

8 transition_counts[discrete_temp[i]][discrete_temp[i+1]] += 1

9

10 # Normalize to get probabilities

11 transition_matrix = {}

12 for state , transitions in transition_counts.items():

13 total = sum(transitions.values ())

14 for next_state , count in transitions.items():

15 transition_matrix [(state , next_state)] = count / total

16

17 print("Transition Probabilities:", transition_matrix)

Transition Probabilities:

{(25, 25): 0.5614035087719298,

(25, 26): 0.2982456140350877,

(25, 24): 0.12280701754385964,

(25, 23): 0.017543859649122806,

(26, 26): 0.41379310344827586,

(26, 25): 0.5172413793103449,

(26, 24): 0.06896551724137931,

(24, 25): 0.75, (24, 24): 0.25, (23, 25): 1.0}

4.6 Autoregressive Model: Influence of Parameter

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.linear_model import LinearRegression

4 from sklearn.metrics import mean_squared_error

5

6 # generate synthetic temperature data

7 days = np.arange(1, 366)

8 temperature = 25 + 0.5 * np.sin (0.1 * days) + np.random.normal(0, 0.5,

size =365)

9

Revision 5

Minor in AI

10 # We create a function to generate input -output pairs for

11 # training the AR model. The function takes a time series

12 # and extracts sequences of length \textit{p} as inputs ,

13 # with the next value as the output.

14

15 def prepare_data(data , p):

16 X, y = [], []

17 for i in range(len(data) - p):

18 X.append(data[i:i + p])

19 y.append(data[i + p])

20 return np.array(X), np.array(y)

We train AR models with different values of p and compute the mean squared error
for each.

1 # define training size

2 training_size = 280

3

4 # different values of p to evaluate

5 p_values = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]

6

7 ar_models = {}

8 mse_scores = {}

9

10 for p in p_values:

11 X, y = prepare_data(temperature , p)

12

13 # Split data into training and testing sets

14 X_train , X_test = X[: training_size], X[training_size :]

15 y_train , y_test = y[: training_size], y[training_size :]

16

17 # Train linear regression model

18 model = LinearRegression ()

19 model.fit(X_train , y_train)

20

21 # Make predictions

22 y_pred = model.predict(X_test)

23

24 # Compute MSE

25 mse = mean_squared_error(y_test , y_pred)

26

27 # Store model and error

28 ar_models[p] = model

29 mse_scores[p] = mse

30

31 # Print MSE scores

32 print(mse_scores)

{1: 0.33608976834741705, 2: 0.30475085893549164, 3: 0.2958559235325939,

5: 0.28662182132656844, 7: 0.28883656538341396, 11: 0.27522790581420287,

13: 0.2795310851246623, 17: 0.25787422226688395, 19: 0.2589797781277694,

23: 0.2522163052171486}

Finally, we plot the MSE values against different p values to observe how increasing
the number of past values affects prediction accuracy.

1 # Plot MSE vs p

2 plt.plot(list(mse_scores.keys()), list(mse_scores.values ()), marker=’o’)

Revision 6

Minor in AI

3 plt.xlabel("p")

4 plt.ylabel("MSE")

5 plt.title("MSE vs p")

6 plt.show()

5 Text Processing

Text processing is an essential step in Natural Language Processing (NLP) and data
cleaning. Raw text data often contains inconsistencies such as punctuation, whitespace,
and case variations, which need to be addressed before analysis. One common preprocess-
ing technique is tokenization, which involves splitting text into meaningful units called
tokens.

Figure 1: Steps of Text Processing

In this example, we preprocess the text from the novel The Time Machine by H.G.
Wells. The following steps are involved:

• Convert text to lowercase to maintain consistency.

• Remove punctuation and whitespace to standardize the content.

• Split the text into individual words (tokens) for further processing.

Revision 7

https://ia904503.us.archive.org/20/items/thetimemachine00035gut/old/timem11.txt

Minor in AI

The following Python code reads the text file, preprocesses the text, and performs
tokenization.

5.1 Reading the Text File

The first step is to read the file and store its content as a string.

1 # Read the file

2 txt_filename = "The_Time_Machine.txt"

3

4 with open(txt_filename , "r", encoding="utf -8") as f:

5 lines = f.read()

5.2 Converting to Lowercase

Converting text to lowercase ensures uniformity in token processing.

1 import re

2

3 # Convert text to lowercase

4 lines = lines.lower ()

5.3 Removing Punctuation and Whitespace

Special characters and extra whitespace are removed using regular expressions.

1 # Remove punctuation and whitespace

2 lines = re.sub(r"[\s\n]", "", lines)

5.4 Analyzing the Processed Text

After preprocessing, we can examine the length of the processed text and extract a sample.

1 # Get the length of the processed text

2 len(lines)

0

1 # Display the last 10 characters

2 lines [-10:]

’’

5.5 Tokenization

Finally, we split the text into individual tokens using whitespace as a delimiter.

1 # Tokenize the text

2 tokens = lines.split()

Revision 8

Minor in AI

6 Key Takeaways

1. Auto-Regressive (AR) Models: AR models predict future values based on past
observations. An AR(p) model uses p past values for forecasting.

2. AR(1) and Markov Chains: The AR(1) model exhibits a first-order dependence
similar to Markov Chains, where the next state depends only on the current state.

3. Sequence Data Characteristics: Time series and sequential data exhibit or-
dered structure, temporal dependencies, and varying lengths, making them crucial
in forecasting and pattern recognition.

4. Synthetic Data Generation: We created a synthetic temperature dataset to
illustrate AR model applications in real-world time series analysis.

5. Feature Engineering for AR Models: Constructing input matrices with past
observations enables model training for time series forecasting.

6. Least Squares Estimation for AR Models: Coefficients of AR models can be
estimated using least squares, enabling effective forecasting of future values.

7. Model Performance: Evaluating predictions using metrics like Mean Squared
Error (MSE) helps assess model accuracy in time series forecasting.

8. Text Processing Fundamentals: Text data needs preprocessing steps such as
tokenization, stemming, lemmatization, and stopword removal to improve analysis
and modeling.

Google Collab Link : Code Here!!!

Revision 9

https://colab.research.google.com/drive/1x-mf-vQH-lXhboDIM5aSSHJPzqUHtiEo?usp=sharing#scrollTo=eUXJcb2U9tmL

	Introduction
	Auto-Regressive (AR) Models
	The AR(1) Model
	Connection to Markov Chains

	Sequence Data
	Characteristics of Sequence Data
	Types of Sequence Data

	Code Implementation
	Generating a Synthetic Time Series
	Creating AR(p) Model Inputs
	Training an AR(3) Model
	Linking AR(1) to Markov Chains
	Markov Chain Transition Probabilities
	Autoregressive Model: Influence of Parameter

	Text Processing
	Reading the Text File
	Converting to Lowercase
	Removing Punctuation and Whitespace
	Analyzing the Processed Text
	Tokenization

	Key Takeaways

