
Autoregressive Models: Unraveling Sequential

Patterns

IIT Ropar Minor in AI

3rd March, 2025

1 A Tale of Predictive Insight

Emma stood by the window of her small meteorological research station, study-
ing the intricate weather charts that covered her walls. For years, she had been
fascinated by a simple yet profound question: Could the past truly predict the
future?

Her breakthrough came on a crisp autumn morning. While most meteorolo-
gists relied on complex, disconnected measurements, Emma noticed something
different. The temperature wasn’t random—it told a story. Each day whispered
secrets about the next.

“It’s not about individual data points,” she would tell her colleagues,
“it’s about the conversation between yesterday and tomorrow.”

1



Figure 1: Emma analyzing weather patterns

2 Understanding Autoregressive Models

2.1 Sequential Data Fundamentals

• Collections of ordered observations: D = {t1, t2, ..., tn}

• Applications: Weather prediction, medical records analysis, NLP

• Key challenge: Handle varying-length inputs (e.g. text, medical time
series)

2



2.2 Comparing Sequence Modeling Approaches

Method Input Type Typical Use

AR Models Fixed-length sequences Time series forecasting
MLP Fixed-length vectors Tabular data
CNN Varying resolution grids Image processing

2.3 The Temperature Prediction Case

From whiteboard data (past 2 days window):
Day Temp (°C)
1 30
2 32
3 33
4 31
5 ?

Prediction equation for day 5:

t5 = b+ w1t4 + w2t3 (1)

3 Mathematical Foundation

3.1 General AR(p) Model

For order p:

Xt = b+

p∑
i=1

wiXt−i + ϵt (2)

Special cases:

• AR(1): Xt = b+ w1Xt−1

• AR(2): Xt = b+ w1Xt−1 + w2Xt−2

3.2 State Transition Dynamics

Autoregressive models leverage a state transition matrix to represent their se-
quential relationships efficiently. This matrix captures how previous observa-
tions influence the current state.

• Matrix Representation: AR models can be expressed in matrix form
to reveal temporal dependencies. For example:

Xt

Xt−1

...
Xt−p+1

 =


w1 w2 · · · wp

1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0



Xt−1

Xt−2

...
Xt−p

+


b
0
...
0


3



• Explanation:

– Each column in the matrix represents a lagged variable’s coefficient.

– The lower triangular structure ensures that earlier observations prop-
agate through the system in an orderly fashion.

4 Practical Implementation

4.1 Generating Synthetic Temperature Data

Emma developed a Python script to simulate and analyze temperature patterns:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.model_selection import train_test_split

4 from sklearn.metrics import mean_squared_error

5

6 # Set random seed for reproducibility

7 np.random.seed (182)

8

9 # Generate synthetic temperature data

10 days = np.arange(1, 101)

11 temperature = 25 + 0.5 * np.sin (0.1* days) + np.random.normal

(0, 0.5, size =100)

12

13 # Visualize the temperature data

14 plt.figure(figsize =(10, 5))

15 plt.plot(days , temperature)

16 plt.title(’Synthetic Temperature Time Series ’)

17 plt.xlabel(’Days’)

18 plt.ylabel(’Temperature ’)

19 plt.show()

4.2 Modified Temperature Prediction Code

Using 2-day window (p=2) from whiteboard example:

1 # Set the autoregressive lag

2 p = 2 # looking back 2 days

3

4 # Create feature matrix and target variable

5 X = []

6 y = []

7

8 for i in range(len(temperature) - p):

9 X.append(temperature[i:i+p])

10 y.append(temperature[i+p])

4



11

12 X = np.array(X)

13 y = np.array(y)

14

15 # Split the data into training and testing sets

16 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.2, random_state =42)

17

18 # Add bias term to the feature matrix

19 X_train_with_bias = np.c_[np.ones(X_train.shape [0]), X_train

]

20 X_test_with_bias = np.c_[np.ones(X_test.shape [0]), X_test]

21

22 # Estimate coefficients using least squares

23 coeff = np.linalg.lstsq(X_train_with_bias , y_train , rcond=

None)[0]

24 print("Model Coefficients:", coeff)

25

26 # Make predictions

27 y_pred = X_test_with_bias @ coeff

28

29 # Evaluate model performance

30 mse = mean_squared_error(y_test , y_pred)

31 print("Mean Squared Error:", mse)

5 Extended Applications

5.1 Text Sequence Processing

Tokenization in Natural Language Processing (NLP) is the process of breaking
down text into smaller units, or tokens. These tokens can be words, phrases,
sentences, or characters. Tokenization is a key step in NLP because it helps to
structure text data for machine processing.

• Purpose: Tokenization converts raw text into meaningful numerical se-
quences for machine understanding.

• Preprocessing: Involves cleaning text (e.g., removing punctuation, con-
verting to lowercase).

• Example:

1 "I love my country" [0, 1, 2, 3]

2 "Country" ID 42 (Oxford English Dictionary -based ,

for example)

5



5.2 Vocabulary Building

Constructing a vocabulary is critical to assigning unique identifiers to each to-
ken:

• Steps:

– Collect all unique words from the training corpus.

– Assign each word a unique integer identifier.

– Include special tokens like <UNK> (unknown), <PAD> (padding).

• Output:

– A mapping of each word to its unique ID.

– Example vocabulary:

1 Vocabulary = {

2 "I": 0, "love": 1, "my": 2, "country":

3,

3 "<UNK >": 4, "<PAD >": 5

4 }

• Applications:

– Efficient Storage: Maps text data to numerical representations for
fast computation.

– Facilitates NLP Tasks: Enables algorithms to process text for
tasks like classification, prediction, and generation.

– Special Tokens Utility:

∗ <UNK> handles out-of-vocabulary words during test time.

∗ <PAD> helps create uniform sequence lengths for batch process-
ing.

6 Conclusion

Autoregressive models bridge diverse domains - from weather patterns to med-
ical diagnostics. By understanding temporal dependencies through parameters
like p, we unlock predictive power in sequential data while addressing challenges
like varying input lengths through techniques like padding and truncation.

6


	A Tale of Predictive Insight
	Understanding Autoregressive Models
	Sequential Data Fundamentals
	Comparing Sequence Modeling Approaches
	The Temperature Prediction Case

	Mathematical Foundation
	General AR(p) Model
	State Transition Dynamics

	Practical Implementation
	Generating Synthetic Temperature Data
	Modified Temperature Prediction Code

	Extended Applications
	Text Sequence Processing
	Vocabulary Building

	Conclusion

