
Minor in AI
Revision

Transformer

April 30, 2025



Minor in AI

1 Transformer Architecture

The Transformer architecture was introduced in the seminal paper “Attention is All You
Need” (Vaswani et al., 2017). It marked a shift in natural language processing (NLP) by
replacing recurrence with a fully attention-based mechanism, enabling greater paralleliza-
tion and improved performance.

Why is it important?

Traditional RNNs (Recurrent Neural Networks) and LSTMs suffer from limitations in
modeling long-range dependencies and are inherently sequential. Transformers allow for
efficient processing of sequences as a whole, making training faster and capturing depen-
dencies across tokens more effectively.

Figure 1: Transformer Architecture

Main Components:

• Input Embedding + Positional Encoding: Maps tokens to dense vectors and
adds positional context.

• Encoder: Processes the input sequence and builds contextual representations.

Revision 1

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762


Minor in AI

• Decoder: Generates the output sequence using encoder outputs.

• Multi-head Attention: Captures different aspects of relationships in the sequence.

• Feed-forward Network: Adds non-linearity and depth.

• Layer Normalization + Residual Connections: Stabilizes training and allows
gradient flow.

How it solves previous limitations:

By removing recurrence, the Transformer can:

• Process sequences in parallel

• Capture global dependencies through attention

• Scale to larger datasets and longer sequences

2 Positional Encoding

Transformers do not have inherent sequential order, unlike RNNs. To capture the position
of each word in a sequence, we add positional encodings to the input embeddings.

What it is:

A deterministic signal (using sine and cosine functions of different frequencies) added to
token embeddings to encode word positions.

Mathematical Formulation:

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
Where:

• pos is the position of the word

• i is the dimension index

• dmodel is the total embedding size

Why it is important:

Without positional encoding, the model treats the input as a bag of words. The encoding
allows the model to distinguish, for example, ”cat sat mat” from ”mat sat cat”.

Revision 2



Minor in AI

3 Attention Mechanism

What it is:

Attention allows the model to focus on different parts of the input sequence when gener-
ating or interpreting output. It assigns weights to tokens based on their relevance.

Why it’s important:

Attention solves the bottleneck of fixed-length context in traditional models. It lets the
model dynamically attend to all positions, enabling richer contextual understanding.

Scaled Dot-Product Attention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Here:

• Q: Queries

• K: Keys

• V : Values

• dk: Dimensionality of keys

How it solves problems:

Attention eliminates the need for fixed-size memory. Each token gets a dynamic repre-
sentation influenced by all other tokens.

Example:

Let:

Q = [1, 0]

K1 = [1, 0], K2 = [0, 1]

V1 = [5, 5], V2 = [10, 10]

QKT = [1, 0] ·
[
1 0
0 1

]
= [1, 0]

Softmax(QKT ) = softmax([1, 0]) = [0.731, 0.269]

Attention = 0.731 · V1 + 0.269 · V2 = [6.35, 6.35]

Revision 3



Minor in AI

4 Query, Key, Value (Q, K, V)

What they are:

• Query (Q): Represents what the model is searching for

• Key (K): Represents what the input offers

• Value (V ): The information retrieved if the query matches the key

Why they matter:

Q, K, and V abstract the attention mechanism and allow efficient implementation of
parallel dot-product attention across tokens.

Analogy:

In a search engine:

• Query = search term

• Key = indexed keywords

• Value = webpage content

5 Multi-head Attention

What it is:

Multiple attention heads running in parallel, each with different learned projections.

Why it’s important:

Single-head attention is limited in representation capacity. Multiple heads allow the model
to attend to different features or relationships simultaneously.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i , KWK

i , V W V
i )

How it helps:

Each head focuses on a different part of the sentence: syntax, coreference, context, etc.

Revision 4



Minor in AI

6 Layer Normalization (LayerNorm)

What is LayerNorm?

Layer Normalization is a technique used to stabilize and speed up the training of deep neu-
ral networks. Unlike Batch Normalization, which normalizes across the batch dimension,
LayerNorm normalizes across the features of a single training example.

Given an input vector x ∈ Rd, LayerNorm computes:

µ =
1

d

d∑
i=1

xi, σ =

√√√√1

d

d∑
i=1

(xi − µ)2

Then the normalized output is:

LayerNorm(x) = γ · x− µ

σ + ϵ
+ β

Where:

• γ and β are learnable parameters (scale and shift)

• ϵ is a small constant for numerical stability

Why is LayerNorm Important?

In the Transformer architecture, LayerNorm helps:

• Prevent internal covariate shift

• Maintain stable gradients during training

• Allow deeper networks to train effectively

Where is it Used in Transformers?

LayerNorm is applied before or after key sublayers in a Transformer block:

• Pre-norm: Normalize inputs before passing to self-attention or feed-forward layers

• Post-norm: Normalize outputs from those layers

Most modern Transformer variants use pre-norm due to better training stability.

Example

Let x = [2, 4, 6], then:

µ =
2 + 4 + 6

3
= 4

σ =

√
(2− 4)2 + (4− 4)2 + (6− 4)2

3
=

√
8

3
≈ 1.632

Normalized x =

[
2− 4

1.632
,
4− 4

1.632
,
6− 4

1.632

]
≈ [−1.225, 0, 1.225]

With γ = 1, β = 0, the output is simply the normalized values.

Revision 5



Minor in AI

7 Workflow with Example

Let’s go through a simple Transformer encoder step-by-step.

Input:

”The cat sat”

Step 1: Embedding + Positional Encoding

• Tokens mapped to embeddings

• Positional encoding added

Step 2: Linear Projections

• Input embeddings projected into Q, K, V using learned weights

Step 3: Self-Attention

• Compute attention scores: QKT/
√
dk

• Apply softmax to get weights

• Use weights to compute weighted sum of V

Step 4: Multi-head Attention

• Repeat attention with multiple heads

• Concatenate all outputs and apply final linear projection

Step 5: Feed-forward Network

FFN(x) = max(0, xW1 + b1)W2 + b2

This brings non-linearity and allows deep processing of token representations.

Step 6: Add & Norm

• Residual connections: x+ Sublayer(x)

• Followed by layer normalization to stabilize training

8 Reinforcement Learning from Human Feedback (RLHF)

What it is:

RLHF is a fine-tuning strategy to align language models with human preferences using
reinforcement learning.

Revision 6



Minor in AI

Why it matters:

Large language models trained on the internet can produce toxic or misaligned outputs.
RLHF enables models to follow human intent more closely.

Steps:

1. Supervised Fine-Tuning (SFT): Use human-annotated responses to fine-tune a
base model.

2. Reward Model (RM): Train a model to score generated responses based on human
preference.

3. Reinforcement Learning (RL): Use Proximal Policy Optimization (PPO) to
reward high-quality outputs.

Where it’s used:

• ChatGPT, Claude, Gemini, and other alignment-sensitive LLMs

• Models where safety, bias mitigation, and helpfulness are critical

Key Takeaways

1. Transformers removed the need for recurrence, enabling better parallelization and
long-range dependency modeling.

2. Positional Encoding restores order information that is naturally lost in attention-
only models.

3. Attention Mechanism allows dynamic weighting of tokens, making contextual
representation powerful and flexible.

4. Queries, Keys, and Values (QKV) form the foundation of attention, represent-
ing intent, content, and information, respectively.

5. Multi-Head Attention lets the model learn from different perspectives and cap-
ture multiple relationships in parallel.

6. Workflow demonstrates that every token is encoded with rich, position-aware, and
context-sensitive representations that feed into deeper layers.

7. RLHF aligns large language models with human values, using reinforcement learn-
ing to optimize responses preferred by humans.

8. LayerNorm provides normalization on the feature dimension, enabling training
stability and helping gradients propagate in deep transformer stacks.

9. Together, Transformers and RLHF represent the state-of-the-art foundation and
refinement mechanisms in modern language models.

Revision 7


	Transformer Architecture
	Positional Encoding
	Attention Mechanism
	Query, Key, Value (Q, K, V)
	Multi-head Attention
	Layer Normalization (LayerNorm)
	Workflow with Example
	Reinforcement Learning from Human Feedback (RLHF)

