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1 Why Neural Networks Matter: A Hiring Case Study

Imagine you’re an HR manager sorting through 100 job applicants. Each candidate has
different qualifications: GPA, internship experience, projects completed, and communi-
cation skills. Manually evaluating these is time-consuming and subjective. This is where
neural networks shine! Our case study uses a Smart Hiring System that automatically
classifies candidates into three categories:

• Strong Fit: Immediate interview call

• Maybe: Requires further evaluation

• Not a Fit: Does not meet criteria

The key challenge? Teaching the computer to make human-like decisions. We solve
this using activation functions and multi-layer perceptrons that mimic how our
brain’s neurons work.

Real-World Impact

A company using this system reduced hiring time by 60% while maintaining 85%
accuracy in candidate selection!

2 The Engine Room: Activation Functions Explained

2.1 The Decision-Making Units

Activation functions determine whether a ”neuron” should activate (fire) based on input
signals. Let’s examine three key types:

Listing 1: Sigmoid Function
1 def sigmoid(z):

2 return 1 / (1 + np.exp(-z))

Why Use Sigmoid?
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• Binary Classification: Converts any input to a value between 0 and 1. For
example, in a hiring system, a sigmoid output of 0.8 means an 80% probability of
being a “Strong Fit”.

• Interpretability: Outputs mimic probabilities, making decisions explainable.

• Limitation: Causes “vanishing gradients” in deep networks (i.e., small updates to
weights during training).

Listing 2: ReLU - The Workhorse
1 def relu(z):

2 return np.maximum(0, z)

ReLU’s Advantage

• Solves the vanishing gradient problem by allowing positive values to pass unchanged.

• Computationally efficient: no complex exponentials.

• Example: In candidate evaluation, if the weighted sum z = −2, ReLU outputs 0,
meaning the neuron ignores irrelevant features.

2.2 Multi-Class Decisions: Enter Softmax

When dealing with our 3-category hiring problem, we need something more powerful:

Listing 3: Softmax Implementation
1 def softmax(z):

2 exp_vals = np.exp(z - np.max(z)) # Prevents numerical instability

3 return exp_vals / np.sum(exp_vals)

Key Difference

• Probability Distribution: Converts scores into probabilities that sum to 1. For
example, outputs [2.0, 1.0, 0.1] become [0.65, 0.24, 0.11].

• Multi-Class Handling: Assigns confidence scores to all classes simultaneously. In
hiring, this answers: “How likely is this candidate for each category?”
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Code Walkthrough: Hiring Decisions

Features: GPA, Intern, Projects, CommSkill
x = [8.9, 6, 5, 9]

Calculate scores for each class
scores = np.dot(x, W) + b

W: weights matrix (3x4), b: biases for each class

Convert to probabilities
probs = softmax(scores)

Example output:
[0.85, 0.13, 0.02] → “Strong Fit”

Explanation

• Each row in W represents weights for one class (Strong / Maybe / Not a Fit).

• The bias b adjusts scores independently for fairness.

• Without softmax, scores could be negative or unnormalized, making compar-
isons difficult.
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3 From Candidates to Flowers: Iris Dataset Classifi-

cation

3.1 Data Preparation: The Foundation

Listing 4: Loading and Standardizing Data
1 from sklearn.datasets import load_iris

2 from sklearn.preprocessing import StandardScaler

3

4 data = load_iris ()

5 X = scaler.fit_transform(data.data) # Standardize features

6 y = data.target # 0=Setosa , 1=Versicolor , 2= Virginica

Why Standardize?

• Features like sepal length (cm) and petal width (mm) have different scales.

• Standardization
(
x−µ
σ

)
ensures no single feature dominates training.

• Example: A GPA of 8.9 and internship months of 6 become comparable after
scaling.

3.2 Building the Neural Network

Listing 5: PyTorch MLP Architecture
1 class IrisMLP(nn.Module):

2 def __init__(self):

3 super().__init__ ()

4 self.layers = nn.Sequential(

5 nn.Linear(4, 10), # 4 input features -> 10 neurons

6 nn.ReLU(), # Activation function

7 nn.Linear (10, 3) # Output layer: 3 classes

8 )

Architecture Breakdown

• Input Layer (4 nodes): Receives sepal/petal dimensions.

• Hidden Layer (10 neurons): Learns complex patterns using ReLU. More neurons
= higher capacity, but also a higher risk of overfitting.

• Output Layer (3 nodes): Uses implicit softmax via PyTorch’s CrossEntropyLoss.

3.3 Training Process Demystified

Listing 6: Training Loop Essentials
1 criterion = nn.CrossEntropyLoss () # Combines softmax + loss

2 optimizer = optim.SGD(model.parameters (), lr=0.1)

3

4 for epoch in range (100):

5 outputs = model(X_train)

6 loss = criterion(outputs , y_train)

7
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8 # Backpropagation magic

9 optimizer.zero_grad () # Reset gradients

10 loss.backward () # Compute gradients

11 optimizer.step() # Update weights

Key Components

• Learning Rate (lr=0.1): Controls how much weights adjust in each step. Too
high → overshoot; too low → slow training.

• Loss.backward(): Automatically calculates gradients using the chain rule. For
Iris data, gradients tell us how to adjust weights to better separate flower classes.

• Epochs: 100 complete passes through the dataset. Loss should decrease steadily if
learning is effective.

4 Key Takeaways: Neural Networks Unlocked

• Activation Functions:
Sigmoid for binary decisions (e.g., spam detection), softmax for multi-class tasks
(e.g., hiring categories, flower types), and ReLU in hidden layers to avoid vanishing
gradients.

• Data Preparation:
Standardization is essential. For example, comparing GPA (scale 0–10) with intern-
ship months (0–12) without scaling distorts the learning process.

• Architecture Design:
Start simple: a 4-10-3 architecture worked well for Iris. Add layers or neurons only
when necessary. ReLU offers a balance of efficiency and expressiveness in hidden
layers.

• Training Dynamics:
Proper learning rate leads to steady loss reduction. If the loss fluctuates wildly,
try lowering the learning rate. Always reset gradients with zero grad() to avoid
incorrect updates.

• Real-World Impact:
Achieved 96% accuracy on Iris classification—surpassing manual sorting. The hiring
system illustrates how neural networks can automate complex, high-stakes decisions.

Remember!

Neural networks aren’t magic—they’re math-powered decision engines. The same
principles that classify flowers can evaluate job candidates! Start with clean data,
choose the right activations, and let backpropagation do the heavy lifting.
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