
Minor in AI
From Candidate Selection to Flower Classification: Implementing Neural Networks

May 7, 2025



Minor in AI

1 Why Neural Networks Matter: A Hiring Case Study

Imagine you’re an HR manager sorting through 100 job applicants. Each candidate has
different qualifications: GPA, internship experience, projects completed, and communi-
cation skills. Manually evaluating these is time-consuming and subjective. This is where
neural networks shine! Our case study uses a Smart Hiring System that automatically
classifies candidates into three categories:

• Strong Fit: Immediate interview call

• Maybe: Requires further evaluation

• Not a Fit: Does not meet criteria

The key challenge? Teaching the computer to make human-like decisions. We solve
this using activation functions and multi-layer perceptrons that mimic how our
brain’s neurons work.

Real-World Impact

A company using this system reduced hiring time by 60% while maintaining 85%
accuracy in candidate selection!

2 The Engine Room: Activation Functions Explained

2.1 The Decision-Making Units

Activation functions determine whether a ”neuron” should activate (fire) based on input
signals. Let’s examine three key types:

Listing 1: Sigmoid Function
1 def sigmoid(z):

2 return 1 / (1 + np.exp(-z))

Why Use Sigmoid?

Neural Networks Fundamentals 1



Minor in AI

• Binary Classification: Converts any input to a value between 0 and 1. For
example, in a hiring system, a sigmoid output of 0.8 means an 80% probability of
being a “Strong Fit”.

• Interpretability: Outputs mimic probabilities, making decisions explainable.

• Limitation: Causes “vanishing gradients” in deep networks (i.e., small updates to
weights during training).

Listing 2: ReLU - The Workhorse
1 def relu(z):

2 return np.maximum(0, z)

ReLU’s Advantage

• Solves the vanishing gradient problem by allowing positive values to pass unchanged.

• Computationally efficient: no complex exponentials.

• Example: In candidate evaluation, if the weighted sum z = −2, ReLU outputs 0,
meaning the neuron ignores irrelevant features.

2.2 Multi-Class Decisions: Enter Softmax

When dealing with our 3-category hiring problem, we need something more powerful:

Listing 3: Softmax Implementation
1 def softmax(z):

2 exp_vals = np.exp(z - np.max(z)) # Prevents numerical instability

3 return exp_vals / np.sum(exp_vals)

Key Difference

• Probability Distribution: Converts scores into probabilities that sum to 1. For
example, outputs [2.0, 1.0, 0.1] become [0.65, 0.24, 0.11].

• Multi-Class Handling: Assigns confidence scores to all classes simultaneously. In
hiring, this answers: “How likely is this candidate for each category?”

Neural Networks Fundamentals 2



Minor in AI

Code Walkthrough: Hiring Decisions

Features: GPA, Intern, Projects, CommSkill
x = [8.9, 6, 5, 9]

Calculate scores for each class
scores = np.dot(x, W) + b

W: weights matrix (3x4), b: biases for each class

Convert to probabilities
probs = softmax(scores)

Example output:
[0.85, 0.13, 0.02] → “Strong Fit”

Explanation

• Each row in W represents weights for one class (Strong / Maybe / Not a Fit).

• The bias b adjusts scores independently for fairness.

• Without softmax, scores could be negative or unnormalized, making compar-
isons difficult.

Neural Networks Fundamentals 3



Minor in AI

3 From Candidates to Flowers: Iris Dataset Classifi-

cation

3.1 Data Preparation: The Foundation

Listing 4: Loading and Standardizing Data
1 from sklearn.datasets import load_iris

2 from sklearn.preprocessing import StandardScaler

3

4 data = load_iris ()

5 X = scaler.fit_transform(data.data) # Standardize features

6 y = data.target # 0=Setosa , 1=Versicolor , 2= Virginica

Why Standardize?

• Features like sepal length (cm) and petal width (mm) have different scales.

• Standardization
(
x−µ
σ

)
ensures no single feature dominates training.

• Example: A GPA of 8.9 and internship months of 6 become comparable after
scaling.

3.2 Building the Neural Network

Listing 5: PyTorch MLP Architecture
1 class IrisMLP(nn.Module):

2 def __init__(self):

3 super().__init__ ()

4 self.layers = nn.Sequential(

5 nn.Linear(4, 10), # 4 input features -> 10 neurons

6 nn.ReLU(), # Activation function

7 nn.Linear (10, 3) # Output layer: 3 classes

8 )

Architecture Breakdown

• Input Layer (4 nodes): Receives sepal/petal dimensions.

• Hidden Layer (10 neurons): Learns complex patterns using ReLU. More neurons
= higher capacity, but also a higher risk of overfitting.

• Output Layer (3 nodes): Uses implicit softmax via PyTorch’s CrossEntropyLoss.

3.3 Training Process Demystified

Listing 6: Training Loop Essentials
1 criterion = nn.CrossEntropyLoss () # Combines softmax + loss

2 optimizer = optim.SGD(model.parameters (), lr=0.1)

3

4 for epoch in range (100):

5 outputs = model(X_train)

6 loss = criterion(outputs , y_train)

7

Neural Networks Fundamentals 4



Minor in AI

8 # Backpropagation magic

9 optimizer.zero_grad () # Reset gradients

10 loss.backward () # Compute gradients

11 optimizer.step() # Update weights

Key Components

• Learning Rate (lr=0.1): Controls how much weights adjust in each step. Too
high → overshoot; too low → slow training.

• Loss.backward(): Automatically calculates gradients using the chain rule. For
Iris data, gradients tell us how to adjust weights to better separate flower classes.

• Epochs: 100 complete passes through the dataset. Loss should decrease steadily if
learning is effective.

4 Key Takeaways: Neural Networks Unlocked

• Activation Functions:
Sigmoid for binary decisions (e.g., spam detection), softmax for multi-class tasks
(e.g., hiring categories, flower types), and ReLU in hidden layers to avoid vanishing
gradients.

• Data Preparation:
Standardization is essential. For example, comparing GPA (scale 0–10) with intern-
ship months (0–12) without scaling distorts the learning process.

• Architecture Design:
Start simple: a 4-10-3 architecture worked well for Iris. Add layers or neurons only
when necessary. ReLU offers a balance of efficiency and expressiveness in hidden
layers.

• Training Dynamics:
Proper learning rate leads to steady loss reduction. If the loss fluctuates wildly,
try lowering the learning rate. Always reset gradients with zero grad() to avoid
incorrect updates.

• Real-World Impact:
Achieved 96% accuracy on Iris classification—surpassing manual sorting. The hiring
system illustrates how neural networks can automate complex, high-stakes decisions.

Remember!

Neural networks aren’t magic—they’re math-powered decision engines. The same
principles that classify flowers can evaluate job candidates! Start with clean data,
choose the right activations, and let backpropagation do the heavy lifting.

Neural Networks Fundamentals 5


	Why Neural Networks Matter: A Hiring Case Study
	The Engine Room: Activation Functions Explained
	The Decision-Making Units
	Multi-Class Decisions: Enter Softmax

	From Candidates to Flowers: Iris Dataset Classification
	Data Preparation: The Foundation
	Building the Neural Network
	Training Process Demystified

	Key Takeaways: Neural Networks Unlocked

