Revision: Semi Supervised Learning

Minor in Al - IIT ROPAR
5th May, 2025

What is Semi-Supervised Learning (SSL)?

Semi-Supervised Learning (SSL) is a powerful and pragmatic approach within machine learning that
strategically combines a small amount of labeled data with a large pool of unlabeled data. In many
real-world applications, acquiring labeled data is expensive, labor-intensive, and often requires domain
expertise (such as radiologists for medical images, or linguists for language tasks). On the other hand,
unlabeled data is plentiful and usually much easier to obtain—for example, raw texts from the web,
untagged photos, or untranscribed speech.

SSL fills the space between two traditional learning paradigms: supervised learning and unsupervised
learning. Supervised learning exclusively uses labeled examples, where each data point is paired with a
corresponding label, such as an image annotated as ”cat” or "dog.” Unsupervised learning, in contrast,
deals solely with unlabeled data and typically focuses on identifying structure within the data, such
as clustering or dimensionality reduction. SSL, being a hybrid, harnesses the strengths of both—using
the few labeled examples to guide the learning process while exploiting the structure inherent in the
unlabeled data to enrich and reinforce the model’s understanding.

The main objective of SSL is to achieve high performance without requiring large amounts of labeled
data. By learning from both types of data, SSL models can uncover relationships, structures, and clusters
that would remain hidden if only labeled data were used. This is especially crucial in domains where
labeling is infeasible at scale. SSL models are designed to use unlabeled data not just as passive input
but as a meaningful contributor to the training process, improving the generalization and robustness of
the final model.

Motivation and Real-Life Examples

The practical motivation behind SSL is rooted in the imbalance between the availability of unlabeled
and labeled data. In many domains, while there’s no shortage of raw data, annotation is a bottleneck.
To illustrate this, consider two concrete examples:

The first example is email spam detection. Suppose a user manually labels 100 emails as either
“Spam” or “Not Spam.” This is a small labeled dataset, as each labeling action consumes time and
effort. Meanwhile, there may be an additional 10,000 emails available without any labels. A supervised
model trained only on the 100 labeled samples would likely perform poorly due to limited data diversity.
However, SSL makes it possible to improve model performance by also learning from the patterns,
language structure, and metadata in the 10,000 unlabeled emails. Even without explicit labels, the
model can identify recurring features common to spam messages and differentiate them from legitimate
ones.

The second example comes from the medical field, where X-ray images must be reviewed and labeled
by radiologists—a slow and expensive process. Suppose you have access to 500 labeled X-rays and 50,000
unlabeled ones. Instead of labeling all 50,000 (which might take months), SSL can help the model learn
from the patterns present in both the labeled and unlabeled datasets. For instance, the model may notice
shared structural patterns among images indicating pneumonia, even when labels are not provided. This
enables the creation of a robust diagnostic tool with significantly reduced annotation costs.

Mathematical Formulation

To formally define Semi-Supervised Learning, let’s assume we have two datasets. The first, denoted as

Dy, = {(zi,yi) Yomy

consists of [labeled samples where x; represents the input features and y; the corresponding label. The
second dataset,

Dy = {xl}iiéﬂrl
consists of u unlabeled samples. Together, the total dataset includes [4+ u samples.

The learning task is to find a function f(z)—often a classifier or regression model—that generalizes
well, not just over the labeled data but also in the context of the entire input space that includes the
unlabeled data. This is usually done by minimizing a combined loss function that includes a supervised
component (based on the labeled data) and an unsupervised component (based on patterns inferred
from the unlabeled data). The inclusion of the unsupervised loss encourages the model to discover the
structure in the data distribution, ensuring smoother decision boundaries and improved generalization.

Why SSL is Important

The significance of SSL lies in its ability to circumvent the need for large labeled datasets, which are
often the main bottleneck in deploying machine learning systems. Labeling is expensive not just in
monetary terms but also in the time and effort required from skilled professionals. For instance, in
medical imaging, a single scan might take a specialist several minutes to evaluate, and massive datasets
can require months of annotation.

Unlabeled data, by contrast, is ubiquitous. It exists in the form of logs, documents, emails, sensor
readings, audio files, and more. These datasets are already collected in the course of normal business or
operations, making them essentially ”free” in terms of cost.

SSL unlocks the latent potential of these unlabeled datasets. It enables models to leverage both data
types, reducing reliance on labels while improving performance. This is especially crucial in fields like:

Medical Imaging: Few labeled scans, massive hospital databases

Speech Recognition: Abundant audio, limited transcripts

Text Classification: Rich corpora of raw documents

Autonomous Driving: Millions of road scenes, few annotated ones

Visualizing SSL

To visualize how SSL works, imagine a 2D space where data points are plotted based on their features.
Labeled points might be red (class A) and blue (class B). The labeled data, being sparse, provide only a
rough idea of the boundary between classes. Unlabeled points, though colorless, populate the space and
form discernible clusters and patterns.

A model trained only on labeled points might draw a poor boundary, cutting across dense regions.
SSL techniques use the unlabeled points to infer that the boundary should avoid cutting through dense
clusters and instead run through sparse regions, aligning better with the true data distribution. This
helps the model achieve low-density separation, leading to improved classification accuracy.

Cluster Assumption in 55L

g x ® Labeled Class A
*x Labeled Class B
7F % Unlabeled Data
® x
(13 = S % x
M M

5 I
o~ = * »
a * x
5 4
=) x x
IE:I j Ed

% x =
5 XX
x X X x
1 S .
X
1] x
L L L
0 2 4 & 8
Feature 1

Comparing Learning Paradigms

SSL stands out when compared to traditional learning paradigms. In supervised learning, only labeled
data is used, which limits scalability and adaptability when labeled data is scarce. In unsupervised
learning, there is no label information at all, which restricts tasks to clustering or representation learning.

SSL, by utilizing a mix of few labeled and many unlabeled examples, offers a compromise. It provides
the model with direct supervision where available and allows it to generalize patterns from the unlabeled
data. This is particularly useful for tasks like spam detection, where collecting a few labeled samples is
feasible, but labeling thousands is not.

Data Used

Learning Type

Example

Supervised
Unsupervised

Only labeled
Only unlabeled

Image classification
Customer segmentation

Semi-Supervised | Few labeled + many unlabeled | Spam detection with limited labels

Key Assumptions in SSL

Self-Training

Self-training is one of the simplest yet effective semi-supervised learning strategies. The central idea is
to iteratively improve the model by using its own high-confidence predictions as ground truth labels for
unlabeled data. Initially, a classifier is trained using the small set of labeled data. This classifier is then
used to predict labels for the unlabeled data. From these predictions, only those with a confidence score
above a specified threshold (e.g., 95%) are selected. These high-confidence predictions are treated as
pseudo- labels, and the corresponding data points are added to the labeled dataset. The model is then
retrained using this expanded dataset. This process is repeated over several iterations. Over time, the
model becomes more confident and starts labeling more data correctly. However, care must be taken
as poor pseudo-labels early on can mislead the training process. It is crucial to use a well-calibrated
confidence threshold to mitigate noise in pseudo-labels.

Co-Training

Co-training assumes the data can be represented from two or more independent and sufficient views.
Two separate models are trained on different feature subsets. For example, when classifying web pages:

e View 1: Page content (words like “goal”, “score”)

e View 2: Hyperlinks (e.g., links to ESPN)

Each classifier labels unlabeled examples for the other. This mutual learning process helps both
models improve as long as the views are conditionally independent and each view alone is sufficient for
classification.

Generative Model Assumption

This assumption is that the data are generated by underlying probabilistic distributions (e.g., Gaussians).
If the model can fit a probability distribution to the labeled and unlabeled data (say, one Gaussian per
class), it can assign a new point to the most likely distribution (i.e., class). This method is effective when
the actual data-generating process aligns with the assumed distributions.

Cluster Assumption

This states that points in the same cluster likely share the same label. By clustering both labeled and
unlabeled data (using, for instance, K-means), we can assign cluster-wide labels based on the few labeled
samples.

Low-Density Separation

The principle here is that a good classifier should place its decision boundary in low-density regions—areas
of the feature space with fewer data points. This reduces the chance of misclassifying similar samples.
This is the rationale behind SSL techniques like Transductive SVMs.

Manifold Assumption

This powerful idea proposes that high-dimensional data often lie on a low-dimensional manifold. For
example, images of handwritten digits live in a 784-dimensional space (28x28 pixels), but the variation
is smooth and controlled (stroke, slant, thickness), forming a lower-dimensional structure. SSL models
can propagate labels along this manifold, assigning similar labels to nearby points.

Summary Table of SSL. Assumptions

Assumption Key Idea Example

Self-Training Confident predictions are likely correct | Red fruit labeled as ” Apple”
Co-Training Independent views teach each other Text + hyperlink views of a webpage
Generative Model | Data comes from known distributions Gaussian clusters in 2D

Cluster Same cluster — same label Cat/dog image clusters

Low-Density Boundaries avoid dense regions Two moons toy dataset

Manifold Labels vary smoothly along manifolds | Handwriting of digit ”3”

Related Paradigms to SSL

Transfer Learning

Transfer Learning involves transferring knowledge learned in one domain (called the source domain) to
a different but related domain (the target domain). Usually, this involves pretraining a model on a large
labeled dataset (e.g., ImageNet), and then fine-tuning it on a smaller labeled dataset from the target
domain (e.g., X-ray classification). The primary goal is to reuse features and model weights learned from
one context to improve performance in another, especially when labeled data is limited in the target
domain.

Weakly-Supervised Learning

Weakly-Supervised Learning focuses on using imperfect labels, rather than few labels. These imperfec-
tions might include:

e Noisy labels (e.g., auto-tagged tweets)
e Incompletely labeled data (e.g., videos labeled only by title)
e Coarse labels (e.g., document labeled with topics but no sentence-level tags)

While SSL assumes you have a few high-quality labels, Weak Supervision tolerates many low-quality
labels. The model then learns to identify signal amidst the noise. SSL and Weak Supervision can be
combined for greater flexibility in real-world tasks.

Positive and Unlabeled (PU) Learning

PU Learning is a special case of SSL where only positive examples are labeled, and the rest are unlabeled.
There are no known negative examples. A common use case is spam detection, where spam emails are
flagged, but non-spam (ham) emails are not explicitly labeled.

Meta-Learning

Meta-Learning, or “learning to learn,” aims to enable a model to adapt quickly to new tasks with minimal
data. Unlike SSL, which works on a single large task, Meta-Learning trains across many small tasks—for
instance, classifying new classes using only 1 or 5 labeled examples per class.

Self-Supervised Learning

Self-Supervised Learning removes external labels entirely. Instead, it creates pseudo-labels or proxy
tasks (called pretext tasks) directly from the data. Examples include predicting missing image patches
(in models like SimCLR), predicting the next word (BERT), or reconstructing masked tokens.

Inductive vs Transductive Learning in SSL

Inductive SSL

In Inductive Learning, the goal is to learn a general function f(x) that can be applied to any new, unseen
input. This approach trains the model on both labeled and unlabeled data, using various semi-supervised
learning (SSL) techniques such as pseudo-labeling, consistency regularization, entropy minimization, and
data augmentation.

The defining feature of inductive SSL. methods is generalization. That is, after training, the model
is not restricted to a fixed test set—it can be deployed to make predictions on future data drawn from
the same (or even a shifted) distribution. This makes inductive SSL highly practical in dynamic or
streaming environments where new data continuously arrives and retraining is costly.

For instance, consider an email spam filter: the model is trained on a mix of labeled (spam/not spam)
and unlabeled emails, and once trained, it must classify entirely new emails it has never seen before.
Inductive methods are suitable here because they aim to capture the underlying patterns in the data
and encode this knowledge into a reusable decision function f(z).

Some popular techniques in inductive SSL include:

e Self-training, where a model iteratively labels unlabeled data and retrains on its own predictions.

e Consistency-based methods, like the Pi-model or Mean Teacher, which enforce that the model
outputs similar predictions under input perturbations or model ensembling.

e Contrastive learning, where unlabeled data is used to learn high-quality feature representations
by contrasting positive and negative pairs, often improving generalization in low-label regimes.

Inductive learning is a common choice in domains such as natural language processing, computer
vision, and recommender systems, where deployment on unseen data is a core requirement.

Transductive SSL

In Transductive Learning, the model’s objective is more restricted: instead of learning a general function
for all future inputs, it focuses on labeling only the specific unlabeled data that is available during
training. This makes transductive SSL more of a one-time inference task, where the model adapts
specifically to the structure of the given dataset and doesn’t need to generalize beyond it.

One of the clearest examples of transductive SSL is label propagation on graphs. Here, both
labeled and unlabeled instances are nodes in a graph, with edges representing similarities. The algorithm
spreads label information from labeled nodes to their neighbors in a way that respects the graph structure.
Since the graph includes all test data, the solution is optimized for that specific set of unlabeled nodes,
rather than learning a general function applicable to arbitrary new nodes.

This paradigm is well-suited for scenarios such as:

e Text classification on a fixed corpus, where the goal is to assign categories to a known set of
unlabeled documents.

e Node classification in citation or social networks, where the entire graph structure is known in
advance.

e Medical datasets where the set of test samples is fixed due to privacy constraints or limited data
availability.

Transductive methods often benefit from strong structural assumptions (like smoothness or cluster
assumptions) and can achieve high accuracy by tailoring the learning process to the known test set.
However, their lack of generalizability can be a drawback if the model needs to handle new data in the
future.

Comparison Table

Feature Inductive Transductive

Goal Learn a general classifier f(z) Predict labels for a fixed unlabeled set
Output Deployable model Only predictions, no reusable model
Generalization | Works on unseen data Cannot generalize to new data
Examples Pseudo-labeling, MixMatch Label propagation, TSVM

Advantage Real-world deployment possible | High accuracy on current batch
Limitation May sacrifice some accuracy Not usable on future data

Ladder Networks and I[I-Models (Pi-Models)

Ladder Networks

A Ladder Network is a deep neural network architecture that combines supervised and unsupervised
learning by denoising internal representations. It consists of:

e A bottom-up encoder: adds noise to the input and passes it through the network
e A top-down decoder: reconstructs the clean version of each layer’s activation
e Skip connections between encoder and decoder layers, forming a “ladder” shape

Each layer in the encoder learns noisy representations, while the decoder learns to recover the clean
activations. Supervised loss is applied at the top (final output), and unsupervised loss is applied to each
hidden layer. The total loss function is a combination of:

e Supervised loss (e.g., cross-entropy for classification)

e Layer-wise reconstruction loss, each weighted by a parameter \;

Moisy Encoder Clean Decoder
- -
Ermacher L4 Fmmm e E Degoder L
Ercoder L3 [- Dwcoder L3
Ercoder L2 Fmmmmmmm e -l Decoder Lé
Ercoder L1 .._..__----------------————----~| DOezoder LS

[1-Model (Pi-Model)

The II-Model introduces consistency regularization. It is based on the idea that a model’s prediction
should remain stable under small perturbations of the input.
Mechanism:

e The same input x is passed twice through the same neural network with different augmentations
or dropout noise.

e This results in two outputs: fi(x + €1) and fo(z + €2)

e The model is trained to make these outputs match:

Lunsup = ||f1(£C) - f?(‘r)H2

Variational Autoencoders (VAEs)

While traditional autoencoders learn to compress and reconstruct data, Variational Autoencoders
(VAES) bring a twist — they model the latent representation as a probability distribution.

The main idea is not just to reconstruct data, but to learn the generative process behind the data.
This allows the model to generate new, similar samples by sampling from the learned distribution.

Intuition Behind VAEs

Imagine an encoder that compresses an input image (say, of a dog) into a summary z. The decoder then
reconstructs the image from this summary. But unlike a regular autoencoder, VAEs treat z as a random
variable — a point sampled from a normal distribution parameterized by a mean p and variance o2.
This means the same image might map to slightly different z vectors each time, and the decoder
can learn to reconstruct slightly different outputs from them. Over time, the model learns to generate

diverse and realistic outputs.

VAE Loss Function

To train a VAE, the objective combines two components:

1. Reconstruction Loss: Measures how close the reconstructed output & is to the original input x.
Common choices include mean squared error (MSE) or binary cross-entropy.

2. KL Divergence: Denoted KL(g(z|z) || p(z)), this term forces the learned latent distribution
q(z]z) to be close to a prior distribution, usually p(z) = M (0, I).

The total loss is:
L = Ey(;) [log p(z|2)] — KL(q(2|z) || p(2))

Why Use a Distribution?

By modeling z as a distribution rather than a fixed vector, the decoder can sample an infinite number
of latent codes and generate infinite variants of the data.

For example, once a VAE is trained on handwritten digits (MNIST), you can sample a z ~ A(0,1)
and decode it to produce a new digit image — even if it was not part of the original training data.

Diffusion Models: A Powerful Evolution

VAEs work in a single jump: z — z — &. But this one-shot approach can struggle to capture complex
details in high-quality data like realistic images.

Diffusion models solve this by taking a multistep approach. During training, noise is gradually
added to the input data across many steps until the image becomes pure noise. Then, the model learns
to reverse this noise — step-by-step — to reconstruct the original image.

This “denoising” process leads to much sharper, more detailed, and realistic outputs. Tools like
DALL-E 3 and Stable Diffusion are based on this concept.

Why Are They Called Denoising Models?

Because the model learns to recover a clean image from noisy inputs. The training phase involves adding
noise, and the generation phase is the reverse: removing that noise gradually to form coherent outputs.

VAEs in Semi-Supervised Learning (SSL)

To apply VAEs in an SSL setting, we extend the VAE by adding a classifier to the architecture. Now,
in addition to reconstructing the input, the model also predicts a class label y.

Architecture Overview
e The input x is passed through the encoder, yielding a latent variable z.
e 2 is used in two branches:

— A decoder reconstructs z as .

— A classifier predicts the label 3.

Training Strategy

For labeled data: Use all three components of loss:
1. Reconstruction loss (z — z — &)
2. KL divergence (z ~ N(0,1))
3. Classification loss (z — ¥)
For unlabeled data:
e Predict ¢ from z.

e If confident, use ¢ as a pseudo-label and compute classification loss.

Example: MNIST Digits

Assume you have:
e 500 labeled digit images (0-9)
e 50,000 unlabeled digit images

Train the VAE + classifier with labeled data. For unlabeled data, let the model assign a pseudo-label
if it’s confident. This helps the classifier generalize better and allows the decoder to generate new digits
by sampling new z vectors.

Applications of VAE + SSL

Medical Imaging: Train with a small labeled dataset and a large pool of unlabeled MRI or X-ray
scans. Also useful for generating synthetic scans for augmentation.

e Autonomous Driving: Use unlabeled video frames to learn useful representations for pedestrians,
traffic signs, etc.

e Signature and Handwriting Analysis: VAEs can learn from a few signature samples and
generate realistic variations for verification systems.

e Face Generation and Deepfakes: Conditional VAEs can generate faces by age, gender, or
expression, based on given labels.

Conditional VAEs: Controlled Generation

Regular VAEs sample 2z and generate data randomly. Conditional VAEs (CVAEs) extend this by
also feeding in a label y into the decoder. This way, you can guide the generation process.

Example

To generate a digit ”4”:

Sample z ~ N(0,1)
Provide y =4
Pass [z,y] into the decoder

Output is a synthetic image of digit 4

This is particularly useful in text-to-image generation, controlled synthesis, and attribute-guided sam-

pling.

Key Takeaways

Semi-Supervised Learning (SSL) combines few labeled samples with many unlabeled ones to
improve model performance.

It is effective in reducing labeling effort while still achieving high accuracy.
SSL is valuable in areas with expensive labeling like medical imaging, speech, and text processing.
Assumes that data has structure: clusters, low-density regions, or low-dimensional manifolds.

Popular approaches include self-training, co-training, generative models, clustering, and manifold
learning.

Advanced models like Ladder Networks and II-Models use denoising and consistency to enhance
learning.

Related paradigms are Transfer Learning, Weak Supervision, PU Learning, Meta-Learning, and
Self-Supervised Learning.

SSL works in both inductive (generalizing to new data) and transductive (labeling current data
only) settings.

VAEs (Variational Autoencoders) combine reconstruction and generative modeling by learning
probabilistic latent representations.

In SSL, VAEs can be extended with a classifier, allowing the model to both reconstruct inputs and
predict labels, even with limited supervision.

Unlabeled data is leveraged by marginalizing over all possible labels, weighted by the model’s
predicted class probabilities.

The loss function combines three parts: reconstruction loss, KL divergence, and classification
loss — balancing generative and discriminative learning.

Conditional VAEs (CVAESs) enhance control over generated outputs by incorporating label
information directly into the decoder.

