Revision: SSL

Minor in Al - IIT ROPAR
3rd May, 2025

The Role of Assumptions in Learning

In machine learning, particularly in settings where labeled data is scarce, it is common to make certain
assumptions about the structure of the data in order to enable effective learning. These assumptions
help models generalize from a small set of labeled examples to the larger, unlabeled dataset. Among the
most critical of these is the Smoothness Assumption, especially in semi-supervised learning.

What is the Smoothness Assumption?

The Smoothness Assumption posits that:

If two data points « and 2’ in the input space are “close” to each other (under some ap-
propriate metric), then their corresponding labels y and y’ should also be “similar” or the
same.

Mathematically, we can express this as:
If || — 2| is small = Then |f(z) — f(z')| is also small

where f(z) is the function (classifier or regressor) mapping inputs to outputs, and || - || is a suitable
distance metric (e.g., Euclidean distance).
This assumption implies that the target function f is Lipschitz continuous in some regions:

[f(@) = f@ < Lz =2

for some constant L > 0, at least in the local neighborhood of z.

Illustrative Example in Machine Learning

Consider the task of classifying handwritten digits (such as using the MNIST dataset). Let x be an
image of the handwritten digit “3”. If we slightly modify this image—say by adding small amounts of
noise or shifting a pixel or two—we obtain a new image x’. To a human observer, this modified image
clearly still represents the digit “3”.

The Smoothness Assumption implies that:

fla) =30 = fa)~ e

This behavior is crucial for robustness: we want our classifier not to change its output due to minute,
insignificant variations in input.

Relevance to Semi-Supervised Learning

In semi-supervised learning, we are often given:

e A small set of labeled data points {(z;,y:)}_,

e A much larger set of unlabeled data points {x; }é‘z;ﬂ

The Smoothness Assumption underpins one of the fundamental techniques in this paradigm: label
propagation or manifold regularization. If we believe that labels change smoothly over the data
manifold, then we can propagate the labels from labeled points to nearby unlabeled points based on
proximity.

This is often formalized by minimizing a loss function with a smoothness regularizer, such as:

l

S OLf (@), yi) + A Wigllf () — ;)]

i=1 .3

Here, W;; is a weight measuring the similarity or closeness between x; and z; (e.g., using a Gaussian
kernel), and the second term enforces that similar inputs should lead to similar outputs.

Real-world Intuition: Market Stall Analogy

To understand this assumption intuitively, consider a market stall with several boxes of apples. If you
examine a few apples from a box and determine that they are apples of a certain variety (say, Fuji), you
are likely to assume that all nearby apples in the same box are also Fuji apples.

This is an application of the Smoothness Assumption:

e Input space: Spatial proximity of apples in the box.
e Label: Apple variety.

e Assumption: Nearby apples (small changes in position) should have the same label (variety).

What is the Cluster Assumption?

The Cluster Assumption (also known as the low-density separation assumption) posits that:

Data naturally forms clusters in the input space, and points within the same cluster are likely
to belong to the same class label. Therefore, decision boundaries should lie in low-density
regions between these clusters.

This can be visualized as:
e High-density regions (clusters) contain examples with the same label.
e Low-density regions (between clusters) are optimal places to place class decision boundaries.
Formally, this can be expressed as:
If x and 2’ belong to the same cluster = f(z) = f(x2')

Decision boundary Jf lies in a region where the data density p(z) is low

Illustrative Example in Machine Learning

Consider the classification of handwritten digits (e.g., using the MNIST dataset). If you visualize these
high-dimensional digit images using a dimensionality reduction technique like t-SNE or UMAP, you will
notice that:

e Images of the digit “0” cluster together.
e Images of “1” form another tight cluster.
e And so on for each digit.

Thus, if two images = and z’ are in the same cluster in the embedded space, they likely represent the
same digit:
x, o' €C3= f(z) = f(a') = 3"

A decision boundary between digits “3” and “5” should ideally lie in the sparse region between their
clusters, where ambiguous or low-probability samples exist.

Implications in Semi-Supervised Learning

The Cluster Assumption is essential for designing algorithms that work with minimal supervision. Here’s
how it contributes:

1. Only a few labeled examples per cluster are needed.

2. The model can then propagate the label through the entire cluster using unsupervised density
structure.

3. Label propagation algorithms (like label spreading, spectral graph methods) often rely on this
assumption.

Many semi-supervised algorithms build a similarity graph over data points (using k-nearest neighbors
or Gaussian kernels), then optimize a label assignment function f that is smooth with respect to the
graph Laplacian. This smoothness is motivated directly by the cluster assumption.

Formal Objective (Graph-based Interpretation)

Let W;; be the similarity between data points z; and x; in a graph G over the data. Then, under the
cluster assumption, we minimize:

ZWij(f(Ii) — flx;))?

This encourages f(z) to be approximately constant within clusters and vary only between them, consis-
tent with placing boundaries in low-density areas.

Real-world Analogy: Songs and Music Genres

Imagine you are sorting a large collection of songs using audio features like tempo, rhythm, instrumen-
tation, and mood. Songs with similar properties (e.g., fast tempo, heavy distortion) naturally group
together.

e Songs in one cluster may all belong to the “Rock” genre.

e Another cluster might correspond to “Classical” music.

If you label just a few songs from each genre, and trust the cluster structure, you can infer the genres
of all other songs in the dataset.
This reflects the cluster assumption:

e Songs = data points

Features = input space

Genre = class label

Cluster = high-density region of similar songs

What is the Manifold Assumption?

The Manifold Assumption is a central hypothesis in machine learning, especially in fields involving
high-dimensional input data such as images, speech, and text. It proposes that although data may be
represented in a very high-dimensional input space, the true degrees of freedom underlying the data are
much fewer. Specifically, it states:

Real-world high-dimensional data is distributed near or on a low-dimensional manifold em-
bedded within the high-dimensional ambient space.

In mathematical terms, if our input data lives in RP| where D is very large (e.g., D = 784 for a
28 x 28 grayscale image), then there exists a lower-dimensional manifold M C R” of dimension d (where
d < D) such that:
reEM or zx~M, VrelX

This manifold captures the essential structure of the data, filtering out the redundant or irrelevant
dimensions in which the data does not vary meaningfully.

Geometric Intuition: The Crumpled Paper Analogy

One of the most widely used visual analogies for the manifold assumption is that of a piece of paper
crumpled into a ball and placed inside a three-dimensional space:

e The sheet of paper, when flat, is a 2D surface.

e When crumpled, it appears more complex and fills more space, yet it still has only two degrees of
freedom.

e Although embedded in R3, the crumpled paper is still intrinsically a 2D manifold.

Similarly, even though image data may be represented using hundreds or thousands of pixels, the
actual variation in meaningful content (e.g., rotation, lighting, pose, expression) often resides on a much
smaller number of axes.

Illustrative Example in Machine Learning: The Cat Manifold

Let us consider a machine learning problem where we are training a model to classify images of cats.
Each image is represented as a high-dimensional vector of pixel intensities. However, not all combinations
of pixel values are valid images of cats—only a small subset forms natural-looking cats.

e These natural variations of cat images—due to changes in pose, lighting, background, or fur tex-
ture—form a smooth and continuous manifold in the input space.

e We can denote this manifold as M,t.

e Even though M, C RP (where D is large), the intrinsic dimension of M.y is relatively small.

This structure implies that machine learning algorithms need not learn to classify over the entire
ambient space, but rather only over this much smaller, structured region.

Concrete Real-World Analogy: Fruit Image Manifolds

Imagine a dataset of photographs of different fruits: apples, bananas, and oranges. Each photograph is
an image that can vary in background, lighting conditions, and camera angle. However, the class of each
fruit defines a distinct set of visual characteristics that vary in a structured way.

e All valid apple images form a surface-like structure Mappie.
e All valid banana images form another structure Mpanana, and similarly for oranges.

e These manifolds may be curved and twisted, but they are smooth, coherent surfaces.

These manifolds are likely to be well-separated and low-dimensional relative to the full image space,
and this separation helps classifiers distinguish between classes with fewer labeled examples.

Importance in Semi-Supervised Learning

The manifold assumption plays a foundational role in semi-supervised learning (SSL), where only a
small subset of the data is labeled. The key insight is that:

e Unlabeled data can help to reveal the shape and connectivity of the manifold.

e If the classifier’s decision function is constrained to vary smoothly along the manifold, then labels
can be propagated to nearby unlabeled points efficiently.

This enables label-efficient learning, where the geometric structure of the data itself guides the model
toward correct generalizations.

Graph-Based Algorithms and Manifold Learning
A common way to operationalize the manifold assumption is to construct a graph over the data:

e Nodes represent data points.
e Edges encode similarity, often via k-nearest neighbors or Gaussian kernels.

e Edge weights reflect proximity on the manifold.

Using this graph, we can define smoothness over the manifold and regularize the learning function
accordingly.
Manifold Regularization
In this framework, the learning objective becomes:
!

> £f@) + M+ [19007 @) Pdpo)

i=1 M
Where:
e [is the supervised loss over labeled data.

e ||fl|l% is a regularization term from the function space (e.g., RKHS norm).

e The third term penalizes the gradient of the function f along the manifold, encouraging smooth
variation over the data geometry.

This approach is used in methods such as Laplacian SVMs, label propagation, and diffusion-based
learning.

Semi Supervised Learning Methods

1. Inductive Learning in SSL

Definition

Inductive learning refers to learning a function f : X —) that generalizes beyond the observed data.
The model learns a decision boundary or function that can be applied to any unseen data point drawn
from the same distribution.

Formally:

e Given a labeled training set L = {(x1,91),..., (z;, u)},
e And an unlabeled set U = {x;41,...,Z14u},

e Learn a mapping f : X —) that works for all future z € X.

Purpose
The goal is to learn a predictive function that works on any unseen input from the data distribution, not
just a fixed test set.
Example Use Cases
e Email spam detection: The model must classify future incoming emails.
e Medical diagnosis: Once trained, the model must diagnose new patients.

e Voice assistants: Should understand commands from new speakers.

Common Methods
e Semi-supervised SVMs
e Graph-based label propagation + classifier training

e Consistency regularization methods (e.g., FixMatch, Mean Teacher)

2. Transductive Learning in SSL

Definition

Transductive learning, in contrast, does not attempt to learn a general function over the entire input
space. Instead, it focuses solely on predicting the labels of a specific set of unlabeled data given during
training.

Formally:

e Given labeled data L = {(z1,v1), ..., (z1, %)},

e And a specific unlabeled test set U = {zj11, ..., Titu},
e The goal is to infer {y;11,..., Y4} without building a generalizable function.
Purpose

Rather than generalize, the aim is to optimally classify only the known test instances. No assumptions
are made about performance on unseen data not present during training.

Example Use Cases
e Document classification: Label a fixed batch of documents.
e Social network analysis: Infer roles of specific users.

e Market segmentation: Predict cluster labels of a known customer pool.

Common Methods
e Label propagation on graphs
e Transductive SVMs (TSVM)

e Spectral methods and graph Laplacians

Theoretical Contrast

Inductive

Aims to approximate a global mapping function. Unlabeled data assists in improving the model’s decision
boundary, enhancing generalization.

Transductive

No function is explicitly constructed. The model makes local inferences only on the given test set,

potentially using unlabeled examples as anchor points or graph nodes.

Summary: Comparison Table

Aspect

Inductive Learning

Transductive Learning

Goal

Use of Unlabeled Data

Applicability

Generality

Common Methods

Typical Use Cases

Learn a general function f : X —

y

Helps shape a better decision
boundary

Any future input instance

Generalizes to unseen data

Semi-supervised SVMs,
consistency-based methods
Spam filtering, diagnostics, rec-
ommendation systems

Predict labels for a specific test
set

Helps infer structure within the
known dataset

Only current known unlabeled
examples

Does not generalize beyond test
set

Label propagation, transductive
SVMs

Fixed-batch document classifica-
tion, network role detection

Table 1: Comparison between Inductive and Transductive Learning in SSL

Introduction to Self-Training

Self-training is a classic yet powerful approach to semi-supervised learning. It extends supervised
learning by making use of unlabeled data through a process called pseudo-labeling. The core idea is
intuitive: allow a model trained on a small amount of labeled data to predict labels for unlabeled data,
then retrain using the most confident predictions as if they were true labels.

Self-training is particularly useful when:

e Labeled data is scarce or expensive to obtain.
e Unlabeled data is abundant and relatively easy to collect.

e The classifier can estimate confidence scores or probabilities.

Step-by-Step Workflow

The self-training process typically unfolds over several iterations, where the model gradually improves
by expanding its training set with pseudo-labeled data.

Step 1: Train Initial Model on Labeled Data
e Begin with a small labeled dataset L = {(x;, ;) }_;.
e Train a supervised model f using this dataset.

e The model should produce not just class labels, but also confidence scores or probabilities (e.g.,
softmax outputs).

Step 2: Predict on Unlabeled Data
e Use the model f to predict labels for the unlabeled set U = {x;}}_;.

e Record both the predicted labels §; and their confidence scores p; = f(z;).

Step 3: Select High-Confidence Predictions
e Define a confidence threshold 7 (e.g., 7 = 0.80).

e Only keep predictions where max(p;) > 7.

e These are treated as pseudo-labeled examples L = {(z;,§;)}.

Step 4: Augment Labeled Set
e Merge pseudo-labeled data with original labeled data: L < LU L.

e Optionally, remove selected unlabeled samples from U to avoid repeated use.

Step 5: Retrain the Model
e Retrain the model f using the expanded labeled set.

e Improved coverage of the data distribution is expected with more training samples.

Step 6: Iterate

e Repeat steps 2-5 for multiple rounds until convergence or until no high-confidence pseudo-labels
remain.

e Optionally adjust the confidence threshold over time.

Illustrative Example: Fruit Classification

Problem Setup
Suppose we want to build a fruit image classifier to distinguish between apples and bananas.
e Labeled set: 50 fruit images labeled as either apple or banana.

e Unlabeled set: 950 fruit images with unknown labels.

Self-Training Process

1. Train a convolutional neural network (CNN) on the 50 labeled samples.

2. Predict labels for all 950 unlabeled images using the CNN.

3. Select predictions with a confidence > 0.80 (e.g., model is 90% sure an image is an apple).
4. Add these confident samples to the labeled set and retrain.

5. Repeat for several rounds. With each round, more data is labeled, improving the model.

Challenges in Self-Training

1. Error Propagation

One of the most critical limitations of self-training is the risk of error propagation. Since the model is
responsible for generating its own pseudo-labels on the unlabeled data, any incorrect predictions can be
mistakenly assumed to be true and added to the labeled dataset. When these incorrect samples are used
during retraining, the model reinforces its own misjudgments, leading to a feedback loop of compounding
errors. This is particularly problematic in early iterations, when the model is still weak due to limited
labeled data. Without safeguards, this self-reinforcement can lead to significant degradation in model
performance over time.

2. Sensitivity to Confidence Threshold

Self-training heavily depends on a pre-defined confidence threshold to decide which pseudo-labels are
trustworthy. A low threshold might allow noisy or incorrect labels into the training set, degrading model
accuracy. Conversely, a high threshold may result in very few pseudo-labels being selected, slowing down
the learning process or even stalling progress. This delicate trade-off means that the threshold often
needs to be fine-tuned, and it may require dynamic adjustment across iterations to balance between
learning speed and label quality.

3. Class Imbalance

Class imbalance is another challenge that arises during pseudo-label selection. The model tends to be
more confident about certain classes—often the ones with more labeled examples or clearer features. As
a result, those classes are overrepresented in the pseudo-labeled data. This imbalance skews the training
distribution and may cause the model to be biased towards dominant classes, neglecting underrepresented
ones. If left uncorrected, the imbalance can lead to poor generalization and unfair performance across
different categories.

Variants and Improvements in Self-Training

1. Soft Labeling

Soft labeling is a technique that uses the full class probability distribution predicted by the model
instead of assigning a single hard label. For example, instead of labeling a sample strictly as ”apple,” the
model might assign a probability of 70% to ”apple,” 20% to "banana,” and 10% to ”orange.” This soft
target provides richer information to the model during retraining, preserving uncertainty and reducing
the risk of reinforcing incorrect assumptions. Training with soft labels (e.g., using Kullback-Leibler
divergence loss) encourages smoother decision boundaries and better generalization.

2. Top-k Class-Wise Selection

To mitigate class imbalance, a top-k selection strategy per class can be employed. Instead of
selecting pseudo-labels based solely on global confidence, this method identifies the top & most confident
predictions within each class. This ensures that all classes contribute pseudo-labeled samples, even if
some are inherently harder to classify. By maintaining balanced representation across categories, this
approach helps the model learn a more equitable decision surface.

3. Class Balance Correction

Class balance correction addresses imbalanced pseudo-labeling by explicitly enforcing class distribu-
tion constraints. Techniques include resampling pseudo-labeled data to match target distributions or
applying weighting schemes during training that penalize overrepresented classes and boost underrepre-
sented ones. Some approaches also apply adjusted loss functions (e.g., focal loss) to dynamically balance
class influence during retraining. This ensures that the classifier does not disproportionately favor certain
classes, maintaining fairness and diversity.

4. Ensemble-Based Pseudo-Labeling

Ensemble-based pseudo-labeling improves reliability by leveraging multiple models to generate
pseudo-labels collaboratively. Instead of relying on a single model’s prediction, an ensemble (e.g., a
group of models trained on different subsets or with different seeds) can combine outputs using tech-
niques like majority voting or averaging class probabilities. Only those pseudo-labels that are consistently
agreed upon across the ensemble are selected. This method reduces the chance of incorporating noisy or
overconfident predictions and enhances the robustness of the label propagation process.

Co-Training Method in Semi-Supervised Learning

Co-Training is a classic semi-supervised learning technique that leverages the idea of training two
separate classifiers on two distinct and ideally independent views (feature sets) of the data. It is based on
the intuition that different subsets of features might provide complementary information for classification,
and that one classifier can assist the other by sharing high-confidence pseudo-labels. Co-Training is
especially effective when such views are conditionally independent given the class label and are each
sufficient for learning.

Co-Training Algorithm Steps

Step 1: Split Data into Two Views

The first step in co-training is to identify or engineer two different feature sets (called views) for each
input example. These views should ideally be conditionally independent and provide sufficient informa-
tion on their own to predict the target label. For example, in a web page classification task, one view
might consist of the words on the page, while another could consist of the anchor text in links pointing
to the page.

Step 2: Train One Classifier Per View

A separate classifier is trained on each view using the available labeled data. Let C; and Cy denote the
classifiers trained on view-1 and view-2, respectively. Each classifier learns to make predictions based
solely on its assigned feature set.

Step 3: Predict on Unlabeled Data

Both classifiers are then used to predict labels for the unlabeled instances. Each classifier processes its
own view of the unlabeled data and assigns labels along with associated confidence scores.

Step 4: Select Top-k Confident Predictions

From their predictions, each classifier selects the top-k unlabeled examples for which it is most confident
about the predicted labels. Confidence may be measured using posterior probabilities, margins, or other
classifier-specific scores.

Step 5: Exchange Pseudo-Labels Between Classifiers

Each classifier then shares its selected pseudo-labeled examples with the other classifier. That is, Cy
teaches Cy using its confident predictions, and vice versa. The assumption is that each view provides
information not available in the other, thereby allowing both classifiers to generalize better.

Step 6: Retrain Classifiers

Each classifier augments its labeled training set with the new pseudo-labeled examples received from
its peer. Using the expanded labeled dataset, the classifiers are retrained to improve performance and
update their decision boundaries.

10

Step 7: Iterate

The process of prediction, pseudo-label exchange, and retraining is repeated over several iterations. With
each cycle, both classifiers ideally become stronger as they benefit from each other’s confident knowledge
over unlabeled examples.

Challenges and Limitations of Co-Training

1. Requires Independent and Sufficient Views

A fundamental assumption behind co-training is that the two feature sets (views) are both condition-
ally independent given the label and individually sufficient for learning the target concept. This
assumption is often difficult to satisfy in real-world applications, where feature sets might be correlated
or one view might dominate in informativeness. If this assumption fails, the classifiers may reinforce
shared biases rather than providing complementary learning signals.

2. Sensitivity to Early Pseudo-Label Noise

Like other self-labeling techniques, co-training is vulnerable to early-stage errors. If one classifier
generates incorrect pseudo-labels in the early iterations, and these are shared with the second classifier,
the mistakes may propagate. Since each classifier relies on the other for additional training data, early
noise can significantly degrade the quality of both models, especially in the absence of sufficient labeled
data to anchor learning.

3. Ineffectiveness with Highly Correlated Views

Co-training is less effective when the two views are not truly independent or informative on their own.
If both classifiers are trained on redundant or highly correlated information, the supposed benefit of
complementary learning disappears. Instead of correcting each other’s mistakes, both classifiers may end
up amplifying shared weaknesses or learning nearly identical patterns, which limits the effectiveness of
the method.

Key Takeaways

e Smoothness Assumption: Nearby points in input space should have similar labels.

e Cluster Assumption: Data points naturally form clusters, and decision boundaries lie between
them.

e Manifold Assumption: Data lies on lower-dimensional manifolds embedded in high-dimensional
space.

e Inductive vs. Transductive Learning: Inductive generalizes to unseen data, while transductive
infers labels for specific unlabeled data.

e Self-Training: A model iteratively labels unlabeled data and retrains using confident pseudo-
labels.

e Co-Training: Two classifiers learn from each other using complementary feature views and con-
fident pseudo-labels.

11

