
Natural Language Processing Fundamentals:

Revision Notes

IIT Ropar - Minor in AI

28th April, 2025

1 Introduction to Natural Language Processing

Natural Language Processing (NLP) bridges the gap between human language
and computer understanding. It involves developing algorithms and models
that enable computers to process, analyze, and generate human language. The
field combines linguistics, computer science, and artificial intelligence to create
systems that can understand, interpret, and generate meaningful text.

1.1 Core Components of NLP

• Text Processing: Tokenization, stemming, lemmatization

• Syntactic Analysis: Part-of-speech tagging, parsing

• Semantic Analysis: Word sense disambiguation, semantic role labeling

• Sequence Processing: Handling text as ordered sequences for prediction
and generation

2 Sequence Processing in NLP

2.1 Importance of Sequences

Text is inherently sequential, with meaning derived not just from individual
words but from their order and relationships. Traditional machine learning
approaches that treat inputs as independent features fail to capture these se-
quential dependencies.

Key Insight

In NLP, the order of words matters significantly. The sentences ”Dog
bites man” and ”Man bites dog” contain identical words but convey
entirely different meanings due to sequence.

1



2.2 Sequence-Related Problem Types

One-to-Many Many-to-One

Many-to-Many (Same Length) Many-to-Many (Diff Length)

Image captioning Sentiment analysis

POS tagging Machine translation

• One-to-Many: Single input generates a sequence output

• Many-to-One: Sequence input produces a single output

• Many-to-Many (Same Length): Input and output sequences have
identical length

• Many-to-Many (Different Length): Input and output sequences can
vary in length

3 Word Embeddings

Word embeddings represent words as dense vectors in a continuous vector space,
where semantic relationships between words are captured by their relative po-
sitions.

3.1 Key Embedding Techniques

• Word2Vec: Creates word vectors using either:

– Continuous Bag of Words (CBOW): Predicts a target word from
surrounding context words

– Skip-gram: Predicts surrounding context words from a target word

• GloVe (Global Vectors): Combines global matrix factorization and
local context window methods

• FastText: Extends Word2Vec by treating each word as composed of char-
acter n-grams

2



Example: Word Similarity in Embeddings

In a well-trained embedding space:

⃗king − m⃗an+ ⃗woman ≈ ⃗queen

This demonstrates how embeddings capture semantic relationships and
analogies between words.

4 Recurrent Neural Networks (RNNs)

For More details and images feel free to refer the Stanford RNN cheat-sheet.

RNNs are designed specifically for processing sequential data by maintaining
a hidden state that captures information from previous time steps.

4.1 Basic RNN Architecture

ht−1

xt

RNN

ht

yt

ht = tanh(Whhht−1 +Wxhxt + bh)
yt = Whyht + by

4.2 Parameter Calculation in RNN Models

For an RNN with input dimension din, hidden dimension dh, and output di-
mension dout:

Number of parameters = dh × dh + din × dh + dh︸ ︷︷ ︸
Hidden state computation

+ dh × dout + dout︸ ︷︷ ︸
Output computation

= dh(dh + din + dout + 1) + dout

3

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks


Example: Calculating RNN Parameters

For an RNN with:

• Input dimension: 300 (word embedding size)

• Hidden dimension: 128 neurons

• Output dimension: 10000 (vocabulary size)

Total parameters = 128× 128 + 300× 128 + 128 + 128× 10000 + 10000
= 16384 + 38400 + 128 + 1280000 + 10000
= 1, 344, 912 parameters

4.3 Variants of RNNs

Figure 1: RNN Variants from the Stanford RNN cheat-sheet.

• LSTM (Long Short-Term Memory): Addresses the vanishing gradi-

4

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks


ent problem using a more complex cell structure with gates

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

• GRU (Gated Recurrent Unit): Simplified version of LSTM with fewer
parameters

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Figure 2: LSTM vs GRU from the Stanford RNN cheat-sheet.

5

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks


5 Auto-regressive Models

Auto-regressive models predict the next element in a sequence based on the
preceding elements, making them fundamental for text generation tasks.

P (x1, x2, . . . , xT ) =

T∏
t=1

P (xt|x1, . . . , xt−1)

5.1 Language Modeling

Language modeling involves assigning probabilities to sequences of words, al-
lowing systems to predict likely continuations of text.

Example: Next Word Prediction

Given the sentence fragment: ”The chef cooked the...”
An auto-regressive language model might predict:

• ”meal” (probability: 0.35)

• ”food” (probability: 0.25)

• ”dinner” (probability: 0.15)

• ”pasta” (probability: 0.10)

• ”...” (other possibilities)

6 Sequence-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models handle the translation of one sequence
to another, often with different lengths. They typically consist of an encoder
and a decoder.

6



EncoderInput: ”How are you?”

Context Vector

Decoder Output: ”¿Cómo estás?”

[SOS] ¿Cómo estás? [EOS]

6.1 Encoder-Decoder Framework

• Encoder: Processes the input sequence and compresses it into a context
vector

• Decoder: Generates the output sequence based on the context vector

• Special Tokens:

– SOS (Start of Sentence): Signals the beginning of generation

– EOS (End of Sentence): Signals the end of generation

6.2 Attention Mechanism

Attention allows the decoder to focus on different parts of the input sequence
when generating each output token, addressing the information bottleneck in
the basic encoder-decoder model.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

αij =
exp(eij)∑Tx

k=1 exp(eik)

where eij = score(si−1, hj)

7



Example: Attention in Translation

When translating ”The cat sat on the mat” to Spanish:

• When generating ”gato” (cat), attention focuses heavily on ”cat”
in the input

• When generating ”sentó” (sat), attention shifts to ”sat”

• This dynamic focus improves translation quality, especially for
longer sentences

7 Evaluating Machine Translation: BLEU Score

The Bilingual Evaluation Understudy (BLEU) score quantifies the quality of
machine translation by comparing it to reference human translations.

7.1 BLEU Score Calculation

1. Precision Calculation: Compare n-grams in the candidate translation
to reference translations

Pn =

∑
C∈{Candidates}

∑
n-gram∈C Countclip(n-gram)∑

C′∈{Candidates}
∑

n-gram′∈C′ Count(n-gram′)

2. Brevity Penalty: Penalizes translations that are too short

BP =

{
1 if c > r

e(1−r/c) if c ≤ r

where c is candidate length and r is reference length.

3. Final BLEU Score:

BLEU = BP · exp

(
N∑

n=1

wn logPn

)

where wn are weights typically set to wn = 1/N

8



Example: BLEU Score Calculation

Reference: ”The cat is sitting on the mat.”
Candidate: ”The cat sits on the mat.”
Unigram Precision:

• Matched unigrams: ”The”, ”cat”, ”on”, ”the”, ”mat” (5 out of 6)

• P1 = 5/6 ≈ 0.833

Bigram Precision:

• Matched bigrams: ”The cat”, ”on the”, ”the mat” (3 out of 5)

• P2 = 3/5 = 0.6

Brevity Penalty:

• Reference length: 7 words

• Candidate length: 6 words

• BP = e(1−7/6) ≈ 0.846

BLEU-2 Score (using only uni-grams and bi-grams):

• BLEU = 0.846× exp((0.5× ln(0.833) + 0.5× ln(0.6)))

• BLEU = 0.846× exp(0.5× (−0.183) + 0.5× (−0.511))

• BLEU = 0.846× exp(−0.347) ≈ 0.846× 0.707 ≈ 0.598

So the BLEU-2 score is approximately 0.598 or 59.8%.

8 Modern NLP Architectures

8.1 Transformer Architecture

Transformers have largely replaced RNNs in state-of-the-art NLP systems, us-
ing multi-head self-attention mechanisms. The Transformer – a model that uses
attention to boost the speed with which these models can be trained. The Trans-
former outperforms the Google Neural Machine Translation model in specific
tasks. The biggest benefit, however, comes from how The Transformer lends
itself to parallelization.

The encoding component is a stack of encoders (the paper stacks six of them
on top of each other – there’s nothing magical about the number six, one can
definitely experiment with other arrangements). The decoding component is a
stack of decoders of the same number.

9



Figure 3: Transformer Architecture

8.2 Pre-trained Language Models

Modern NLP systems often use transfer learning with pre-trained language mod-
els that are fine-tuned for specific tasks.

• BERT (Bidirectional Encoder Representations from Transform-
ers)

• GPT (Generative Pre-trained Transformer)

• T5 (Text-to-Text Transfer Transformer)

• RoBERTa (Robustly Optimized BERT Pretraining Approach)

Example: Fine-tuning for Sentiment Analysis

A pre-trained BERT model with 110 million parameters can be fine-
tuned on just 25,000 movie reviews to achieve 95% accuracy on sentiment
classification, demonstrating the power of transfer learning in NLP.

9 Practical Applications of NLP

• Machine Translation: Google Translate, DeepL

• Sentiment Analysis: Social media monitoring, customer feedback anal-
ysis

• Named Entity Recognition: Extracting people, organizations, loca-
tions from text

10



• Question Answering: Virtual assistants, customer support bots

• Text Summarization: News article condensation, report summarization

• Speech Recognition: Voice assistants, transcription services

• Text Generation: Creative writing, content creation, code generation

10 Key Takeaways

Summary Points

• Sequence Processing: The foundation of NLP, handling text as
ordered sequences

• Word Embeddings: Dense vector representations capturing se-
mantic relationships

• RNN Architecture: Specialized neural networks designed for
sequential data

• Seq2Seq Models: Encoder-decoder frameworks for translation
and generation tasks

• Attention Mechanisms: Methods to focus on relevant input
parts during decoding

• BLEU Score: Standard metric for evaluating machine translation
quality

• Modern Architectures: Transformers and pre-trained models
dominate current NLP

11


	Introduction to Natural Language Processing
	Core Components of NLP

	Sequence Processing in NLP
	Importance of Sequences
	Sequence-Related Problem Types

	Word Embeddings
	Key Embedding Techniques

	Recurrent Neural Networks (RNNs)
	Basic RNN Architecture
	Parameter Calculation in RNN Models
	Variants of RNNs

	Auto-regressive Models
	Language Modeling

	Sequence-to-Sequence Models
	Encoder-Decoder Framework
	Attention Mechanism

	Evaluating Machine Translation: BLEU Score
	BLEU Score Calculation

	Modern NLP Architectures
	Transformer Architecture
	Pre-trained Language Models

	Practical Applications of NLP
	Key Takeaways

