
Minor in AI
Revision

Reinforcement Learning

May 06, 2025



Minor in AI

1 Branches of Machine Learning (ML)

Machine Learning (ML) can be broadly categorized into three branches:

• Supervised Learning (SL): The model learns from labeled data. The goal is to
learn a mapping from input to output, where the output (label) is known during
training.

• Unsupervised Learning (UL): The model learns from data that is unlabeled.
The goal is to identify patterns or groupings in the data.

• Reinforcement Learning (RL): In RL, the agent learns from interacting with an
environment. It tries to maximize a cumulative reward signal, often over time, by
taking actions based on the current state of the environment.

Figure 1: Branches of ML

2 Comparison of ML Techniques

Aspect Supervised Learning Unsupervised Learning Reinforcement Learning
Data and Feedback Labeled data, feedback during training Unlabeled data, no feedback Interaction, rewards as feedback
Learning Process Learn from labeled data to predict Find patterns in data Learn from environment interactions
Goal Minimize prediction error Discover patterns Maximize cumulative reward

3 Supervised, Unsupervised, and Reinforcement Learn-

ing

3.1 Supervised Learning (SL)

In supervised learning, the algorithm learns from a training dataset that contains labeled
data, i.e., input-output pairs. The objective is to learn a mapping from inputs to outputs.

Revision 1



Minor in AI

3.2 Unsupervised Learning (UL)

In unsupervised learning, the model is given unlabeled data and must find patterns or
structures within the data. Examples include clustering and dimensionality reduction.

3.3 Reinforcement Learning (RL)

In reinforcement learning, an agent learns to make decisions by interacting with an envi-
ronment. The agent receives feedback in the form of rewards or penalties, and its goal is
to learn an optimal policy for decision-making to maximize cumulative rewards.

4 Sequential Decision Making in RL

In RL, the problem can be viewed as a process of sequential decision-making. The agent
interacts with the environment, takes actions, and receives feedback (rewards). The agent
aims to make decisions that maximize the cumulative reward over time.

Figure 2: Sequential Decision Making

4.1 Reinforcement Learning Framework

Reinforcement learning can be formalized as a Markov Decision Process (MDP).

4.1.1 Markov Decision Process (MDP)

An MDP is a mathematical framework used to model decision-making problems. It is
defined by the following components:

• States (S): A set of states that describe the environment.

• Actions (A): A set of actions the agent can take.

• Transition Function (T ): Probability distribution over next states given the cur-
rent state and action, i.e., T (s, a, s′).

• Reward Function (R): A function that gives the immediate reward when transi-
tioning from state s to state s′ after taking action a.

Revision 2



Minor in AI

• Discount Factor (γ): A factor that discounts future rewards, typically between 0
and 1.

The objective in RL is to learn a policy π(a|s), which specifies the probability of taking
action a in state s, that maximizes the expected cumulative reward over time.

5 One-Armed and Multi-Armed Bandit Problem

5.1 One-Armed Bandit Problem

The one-armed bandit is a simplified version of an RL problem where the agent must
decide which action to take in a single slot machine (bandit). Each action gives a reward
from a fixed, but unknown, distribution. The agent must balance exploration (trying
different actions) and exploitation (choosing the best-known action).

5.2 Multi-Armed Bandit (MAB) Problem

In the MAB problem, the agent faces multiple slot machines, each with its own reward
distribution. The goal is to maximize the total reward by selecting the best arm (slot
machine) over time. The agent must again balance exploration and exploitation.

Figure 3: Multi Armed Bandit Problem

5.3 MAB Solution - Numerical Example

Let’s consider a scenario with two slot machines (arms), each with different expected
rewards:

Arm 1: Expected reward = 0.5

Arm 2: Expected reward = 0.7

The agent initially has no knowledge of the rewards and must decide which arm to pull. By
using exploration (trying both arms), the agent gathers data to update its understanding
and gradually shifts towards exploiting the arm with the higher expected reward (Arm
2).

Revision 3



Minor in AI

5.4 Why Use Recursive Update?

In the MAB problem, recursive updates help the agent continuously improve its estimates
of the expected rewards for each arm. This enables the agent to make better decisions
over time by adjusting its estimates based on new experiences.

5.5 Deriving Recursive Update

Let Q(a) denote the estimated value of action a (the expected reward). The recursive
update for Q(a) after taking action a and receiving reward r is:

Q(a)← Q(a) + α(r −Q(a))

where α is the learning rate, which controls how much the new reward should influence
the estimate. This formula updates the estimate of Q(a) based on the observed reward r
and the current estimate.

The value of Qn is the average of the rewards over n steps:

Qn =
1

n

n∑
i=1

Ri

Qn =
1

n

(
Rn +

n−1∑
i=1

Ri

)
n−1∑
i=1

Ri = (n− 1)Qn−1

Qn =
1

n
(Rn + (n− 1)Qn−1)

Qn = Qn−1 +
1

n
(Rn −Qn−1)

Thus, the recursive update formula for Q(a) is:

Q(a)← Q(a) + α(r −Q(a))

where α = 1
n
.

6 Epsilon-Greedy Algorithm

6.1 Concept

The epsilon-greedy algorithm is a simple strategy for balancing exploration and exploita-
tion in MAB problems. In each step, the agent either:

• Exploits: Chooses the arm with the highest estimated reward with probability
1− ϵ.

• Explores: Chooses a random arm with probability ϵ.

Here, ϵ is a small value (e.g., 0.1), which controls the amount of exploration. If ϵ is
set to 0, the agent will always exploit. If ϵ is set to 1, the agent will explore randomly.

Revision 4



Minor in AI

6.2 Interpretation of Formula

The epsilon-greedy algorithm can be interpreted as a trade-off between exploitation and
exploration. The update formula for Q(a) in the epsilon-greedy setting is similar to the
standard recursive update:

Q(a)← Q(a) + α (r −Q(a))

but the action selection process depends on ϵ. The agent chooses the best action with
high probability but occasionally selects a random action to explore other possibilities.

Figure 4: Algorithm

Revision 5


	Branches of Machine Learning (ML)
	Comparison of ML Techniques
	Supervised, Unsupervised, and Reinforcement Learning
	Supervised Learning (SL)
	Unsupervised Learning (UL)
	Reinforcement Learning (RL)

	Sequential Decision Making in RL
	Reinforcement Learning Framework
	Markov Decision Process (MDP)


	One-Armed and Multi-Armed Bandit Problem
	One-Armed Bandit Problem
	Multi-Armed Bandit (MAB) Problem
	MAB Solution - Numerical Example
	Why Use Recursive Update?
	Deriving Recursive Update

	Epsilon-Greedy Algorithm
	Concept
	Interpretation of Formula


