
Reinforcement Learning
Lecture 2: The Multi-Armed Bandit Problem

Niranjan Deshpande
Minor in AI, IIT Ropar

April 15, 2025

1 / 45



Today’s Agenda

1. Introduction

2. Applications

3. Bandit Algorithms

4. MAB Solution
4.1 Epsilon Greedy Approach
4.2 Upper Confidence Bound
4.3 Thompson Sampling

5. Summary

2 / 45



The One-Armed Bandit

A simplified problem: A single slot machine returns rewards probabilistically.

3 / 45



The Multi-Armed Bandit

Which arm should you pull to maximize rewards over time?
4 / 45



What is the Multi-Armed Bandit (MAB) Problem?

• You are faced with multiple options (arms), each giving rewards drawn from an
unknown distribution.

• At each time step, you choose one arm to pull.

• Goal: maximize the total cumulative reward over time.

• Challenge: Balance exploration (trying new arms) and exploitation (choosing the
best-known arm).

5 / 45



Real-World Applications

• Clinical trials (which treatment to assign).

• Network Routing.

• Online advertising (which ad to show).

• Game AI Designing and dynamic pricing.

• Recommender systems (which product/content to recommend)

6 / 45



Popular Bandit Algorithms

• Epsilon-Greedy: Simple and intuitive with fixed exploration.

• Upper Confidence Bound (UCB): Balances value and uncertainty.

• Thompson Sampling: Bayesian approach using probability distributions.

7 / 45



MAB Solution

From Uncertainty to Estimates

• Each arm (action) has an unknown reward distribution.

• When we choose an arm, we get one sample from its distribution.

• With complete knowledge, we’d always pick the highest expected reward.

• But we must summarize experience using a single informative number.

That number is the mean.

8 / 45



Why Use the Mean?

• The mean is the simplest estimate of expected reward.

• It captures the central tendency and improves with more samples.

Q(a) = E[Rt | At = a], Qt(a) = Estimate at time t

9 / 45



Understanding the Mean

• Each arm produces a sequence of rewards.

• Rewards come from an unknown distribution.

• The true value:
q(a) = E[Rt | At = a]

• We approximate it from observed rewards.

10 / 45



Estimating Action Values

The true value q(a), estimated at time t as Qt(a), is the mean of rewards received when
selecting action a [Sutton & Barto].

Qt(a) =
R1 + R2 + · · ·+ RNt(a)

Nt(a)
=

1

Nt(a)

Nt(a)∑
i=1

Ri

11 / 45



Practical Example

• Arm a pulled 3 times: R1 = 2,R2 = 5,R3 = 3

Q(a) =
2 + 5 + 3

3
=

10

3
≈ 3.33

• This becomes our current belief.

• We update it after every new reward.

12 / 45



Alternative Form: Indicator Function

Qt(ai ) =

∑t
j=1 1{Aj = ai}Rj∑t
j=1 1{Aj = ai}

1{Aj = ai} =

{
1 if Aj = ai

0 otherwise

• Numerator: sum of rewards when ai was selected.

• Denominator: number of times ai was selected.

13 / 45



Formal Notation and Setup

• N: Number of actions (arms)

• ai : i-th action

• At : Action at time t

• Rt : Reward at time t

• q(a): True value of a

• Qt(a): Estimated value at t

• Nt(a): Times a selected by t

14 / 45



Illustrative Example

A1 = a1, R1 = 1

A2 = a1, R2 = 2

A3 = a2, R3 = 5

A4 = a1, R4 = 4

N5(a1) = 3, Q5(a1) =
1 + 2 + 4

3
= 2.33

N5(a2) = 1, Q5(a2) =
5

1
= 5

15 / 45



Why Use a Recursive Update?

• Storing all past rewards is impractical.

• We can update the estimate incrementally.

Qn = Qn−1 +
1

n
(Rn − Qn−1)

16 / 45



Deriving Recursive Update

Qn =
1

n

n∑
i=1

Ri

Expressing Qn in terms of Qn−1:

Qn =
1

n

(
Rn +

n−1∑
i=1

Ri

)
Note that the sum (by definition of Qn−1):

n−1∑
i=1

Ri = (n − 1)Qn−1

Substituting:

Qn =
1

n
(Rn + (n − 1)Qn−1)

Qn = Qn−1 +
1

n
(Rn − Qn−1)

17 / 45



MAB Solution
Summary

• Use sample means to estimate action values.

• Update estimates incrementally:

Qn = Qn−1 +
1

n
(Rn − Qn−1)

• This forms the foundation of bandit algorithms.

18 / 45



Epsilon-Greedy – Concept

• At each time step:

• With probability ε, explore (choose a random arm).

• With probability 1− ε, exploit (choose best estimated arm).

• Simple, effective baseline strategy.

19 / 45



Epsilon-Greedy - Intution

• A random number between 0 and 1 is generated.

• If this number is less than ϵ, the algorithm explores by choosing an arm randomly.

• Otherwise, exploits by selecting the arm with the highest current average reward
estimate.

• The value of the hyperparameter ϵ ∈ [0, 1] controls how often exploration occur:

• A small value (e.g., ϵ = 0.1) allows greedy behavior with occasional exploration.

• A larger value (e.g., ϵ = 0.5) increases exploration, useful during the early stages of
learning.

20 / 45



Epsilon-Greedy – Formula

Qa ← Qa +
1

Na
(Rt − Qa)

• Qa: Estimated reward for arm a.

• Na: Number of times arm a has been selected.

• Rt : Reward received at time t.

21 / 45



Epsilon-Greedy - Code

22 / 45



Upper Confidence Bound (UCB) – Introduction

• UCB is a popular solution to the Multi-Armed Bandit problem.

• Prefer arms with high average reward or high uncertainty.

• Principle: Optimism in the face of uncertainty.

“Instead of only trusting the average reward, give a bonus to actions we are less sure
about.”

23 / 45



UCB - Intuition

• Three arms a1, a2, a3 with different uncertainty levels.

• UCB favors a1 if it has highest variance, even if its mean is lower.

• Outcome:

• If optimism pays off → high reward.

• If not → uncertainty is reduced.
24 / 45



UCB - Summary of Intuition

• Optimism drives exploration.

• Helps balance between:
• Exploiting known good arms.

• Exploring uncertain but potentially better arms.

• Reduces wasted trials over time.

25 / 45



UCB1 - Algorithm Overview

1. Initialization: Play each arm once to initialize estimates.

2. For each time step t ≥ K :
• Compute UCB score for each arm:

UCBt(a) = Qt(a) + c

√
ln t

Nt(a)

• Select the arm with highest UCB value.

• Update average reward Qt(a).

26 / 45



UCB – Formula

UCBt(a) = Qt(a) + c ·

√
ln t

Nt(a)

• Qt(a): Estimated average reward.

• Nt(a): Number of times arm a was selected.

• t: Current time step.

• c : Exploration constant.

27 / 45



Interpreting the Formula

• Qt(a) → Encourages exploitation.

•
√

ln t
Nt(a)

→ Confidence bonus.

• As Nt(a) increases, uncertainty shrinks.

• If Nt(a) stays small and t grows, uncertainty grows.

28 / 45



UCB - Code

29 / 45



UCB vs Epsilon-Greedy

Algorithm Exploration Strategy
Epsilon-Greedy Random arm with probability ε
UCB1 High reward + high uncertainty arms

Adaptivity Fixed exploration
Adaptivity (UCB) Dynamically reduces exploration

30 / 45



UCB - Limitations and Considerations

• Assumes bounded, independent rewards.

• May struggle in nonstationary environments.

• Exploration constant c impacts convergence.

31 / 45



Summary

• UCB balances exploration and exploitation.

• Confidence bounds guide arm selection.

• Over time, focus shifts toward best arms.

• Performs well in many practical applications.

32 / 45



Thompson Sampling - Introduction

• Bayesian approach to balancing exploration and exploitation.

• Maintain a Beta distribution over each arm’s reward probability.

• Focus on estimating the probability of success for each arm.

• Sample from each arm’s distribution and choose the one with the highest sample.

33 / 45



Thompson Sampling - Modeling Belief

• Use Bayesian approach: maintain belief over success probability.

• Use Beta distribution with parameters:

• α: number of successes.

• β: number of failures.

• Mean:
E[θ] =

α

α+ β

34 / 45



Thompson Sampling - Visualizing Beta Distribution

• Shows probability curve over possible success rates.

• Distribution sharpens as more data is observed.

35 / 45



Thompson Sampling - Prior and Posterior

• Start with uniform prior:
θ ∼ Beta(1, 1)

• Update after observing outcome:

• Reward = 1: α← α+ 1

• Reward = 0: β ← β + 1

• Posterior reflects updated belief after each trial.

36 / 45



Thompson Sampling - Working

1. For each arm, sample θa from Beta(αa, βa).

2. Select arm with highest sampled value.

3. Pull arm, observe reward.

4. Update α, β for that arm.

37 / 45



Thompson Sampling - Exploration vs Exploitation

• Arms with many successes → narrow, tall distributions.

• Arms with few trials → wide distributions.

• Random sampling balances:

• Exploitation: favoring best-known arms.

• Exploration: occasionally trying uncertain arms.

38 / 45



Key Takeaways

• Thompson Sampling is a Bayesian method.

• It balances exploration and exploitation automatically.

• Works well with binary rewards and scales to more complex cases.

• Needs just two counters per arm: α and β.

39 / 45



Thompson Sampling – Concept

• Bayesian approach to balancing exploration and exploitation.

• Maintain a Beta distribution over each arm’s reward probability.

• Sample from each arm’s distribution and choose the one with the highest sample.

40 / 45



Thompson Sampling – Formula

θa ∼ Beta(αa, βa)

• αa: Number of observed successes for arm a.

• βa: Number of observed failures.

• Select arm with highest sampled θa.

41 / 45



Optional: Applications

• Online advertising and click-through optimization.

• A/B testing and website design.

• Personalized recommendations.

• Clinical trials and adaptive experimentation.

42 / 45



Thompson Sampling – Concept

• Bayesian approach to balancing exploration and exploitation.

• Maintain a Beta distribution over each arm’s reward probability.

• Sample from each arm’s distribution and choose the one with the highest sample.

43 / 45



Thompson Sampling – Formula

θa ∼ Beta(αa, βa)

• αa: Number of observed successes for arm a.

• βa: Number of observed failures.

• Choose arm with highest sampled θa

44 / 45



Summary

• The MAB problem is a classic setting for decision-making under uncertainty.

• Effective algorithms must balance exploring new arms vs. exploiting known rewards.

• Epsilon-Greedy is simple but static.

• UCB dynamically adjusts based on confidence.

• Thompson Sampling takes a probabilistic Bayesian approach.

45 / 45


	Introduction
	Applications
	Bandit Algorithms
	MAB Solution
	Epsilon Greedy Approach
	Upper Confidence Bound
	Thompson Sampling

	Summary

