
Minor in AI
TinyML

Anomaly Detection for IoT Networks

June 16, 2025



Minor in AI

1 Introduction

Anomaly detection is an increasingly vital tool in modern IoT systems, enabling devices to
autonomously recognize unusual or potentially dangerous behavior. As IoT networks grow
more complex, the ability to detect deviations from normal behavior becomes essential
for ensuring safety, reliability, and efficient operation.

In this notes, we explored the implementation of an end-to-end anomaly detection
system using TinyML. Specifically, a temperature and humidity monitoring setup was
used to collect environmental data, develop and train a lightweight model, and deploy the
trained model on an ESP32 microcontroller for real-time inference and alerting.

Figure 1: Anomaly Detection

2 Types of Anomalies

Understanding the various types of anomalies is crucial for designing robust models that
can distinguish normal variations from true faults. The three principal types are:

1. Point Anomalies: These refer to individual data points that differ significantly
from the majority. For example, a single sensor reading of 35◦C when the expected
range is 24–26◦C.

2. Contextual Anomalies: These occur when a data point is only anomalous within
a specific context. For instance, 30◦C may be acceptable during the day but con-
sidered unusual at night.

3. Collective Anomalies: These involve a series of data points that, taken together,
indicate abnormal behavior—such as a gradual temperature rise over time even if
each individual reading is within normal bounds.

By recognizing these categories, we can better structure the training process and
evaluation metrics of our anomaly detection models.

TinyML 1



Minor in AI

3 Methodology and Implementation

3.1 Data Collection and Preprocessing

The dataset was gathered using environmental sensors capable of measuring temperature
and humidity. Under typical conditions, the values remained close to 24◦C and 40% hu-
midity. The experiment involved both controlled normal states and induced abnormalities
to ensure the model could generalize to unseen conditions.

To support unsupervised learning, K-means clustering was applied. This allowed nat-
ural grouping of data without manual labels, effectively identifying clusters of normal vs.
abnormal behavior. These labeled clusters were then used to train a supervised classifier.

3.2 Model Training and Optimization

A compact neural network was designed to classify inputs as normal or anomalous. The
model architecture was deliberately kept shallow to fit within the memory and compute
constraints of the ESP32. The network was trained using standard classification objectives
and validated to ensure reliable anomaly detection.

Following training, the model was quantized—converting 32-bit floating point weights
to 8-bit integers—to significantly reduce memory usage and increase inference speed, a
critical step for deployment on microcontrollers.

3.3 Deployment on ESP32

The trained and quantized model was converted to TensorFlow Lite format, and then
embedded into an ESP32 board. The Arduino IDE served as the programming interface,
where the TFLite model was linked as a C header file. The ESP32 continuously monitored
sensor inputs and executed real-time inference to flag potential anomalies.

Upon detecting an anomaly, the microcontroller issued alerts—either through LED
signals, buzzer sounds, or UART messages to a connected computer. This simulated a
simple yet effective edge-based alerting system for real-world deployments.

Threshold Guidelines

Normal Range: Temperature = 23–25◦C, Humidity = 35%–45%
Anomaly Trigger: Temperature ¡20◦C or ¿28◦C; Humidity ¡30% or ¿50%

TinyML 2



Minor in AI

4 Visualization: Sensor Anomaly Event

Time (samples)

Temperature (◦C)
Anomaly Detected

5 Hardware Integration and System Considerations

Deploying a neural network on a microcontroller involves multiple constraints:

• RAM limitations: ESP32 has limited memory; hence quantization and model
pruning are crucial.

• Real-time needs: Models must perform inference quickly enough to detect anoma-
lies without delays.

• Sensor accuracy: Sensor drift and noise can affect detection accuracy, so prepro-
cessing may be necessary.

• Power management: For battery-operated systems, power-efficient inference is a
key design requirement.

The successful deployment in this case demonstrates that with careful optimization,
complex anomaly detection pipelines can be compressed and deployed directly at the edge.

Key Takeaways

1. Anomaly detection enhances the robustness of IoT systems by allowing proactive
responses to abnormal conditions.

2. Integrating K-means with neural networks provides a hybrid strategy for labeling
and classification in resource-limited settings.

3. Model quantization and memory-efficient architectures are essential for microcon-
troller compatibility.

4. ESP32 serves as a flexible and low-cost platform for real-time ML inference in em-
bedded environments.

5. Practical deployments must account for sensor reliability, latency, and system ro-
bustness under different environmental conditions.

TinyML 3


	Introduction
	Types of Anomalies
	Methodology and Implementation
	Data Collection and Preprocessing
	Model Training and Optimization
	Deployment on ESP32

	Visualization: Sensor Anomaly Event
	Hardware Integration and System Considerations

