
Minor in AI
TinyML

Deployment of Quantized TFLite Model on ESP32

June 10, 2025

Minor in AI

1 Introduction

Tiny Machine Learning (TinyML) represents a paradigm shift in the deployment of ma-
chine learning models, enabling inference on low-power, resource-constrained devices such
as microcontrollers. One of the key enablers of this technology is TensorFlow Lite, a
lightweight version of TensorFlow designed for edge devices.

This document outlines the complete process of developing, quantizing, and deploying
a TensorFlow Lite (TFLite) model trained on the Iris dataset to an ESP32 microcon-
troller. The workflow includes dataset preprocessing, neural network construction, model
quantization, conversion to TFLite, and embedded deployment using the Arduino IDE.
Special attention is given to evaluating inference performance and model footprint to
assess the feasibility of real-time, on-device learning.

2 Building and Training the Neural Network

The session began with importing necessary packages such as numpy, tensorflow, pandas,
and sklearn. The classic Iris dataset was used as a base, featuring four input fea-
tures—sepal length, sepal width, petal length, and petal width—corresponding to three
flower species.

The dataset was split into training (80%) and test (20%) sets using train test split.
A simple feedforward neural network was created using TensorFlow’s Sequential API:

• Input layer: 4 neurons

• Hidden layer: 10 neurons with ReLU activation

• Output layer: Softmax activation for 3-class prediction

The model was compiled with the Adam optimizer, sparse categorical cross-entropy
loss, and accuracy as the metric. Training for 15 epochs yielded up to 100% training
accuracy, demonstrating the power of even a small neural network on clean datasets.

3 Model Quantization and Conversion

To prepare for deployment, the trained Keras model was converted to the TensorFlow Lite
(TFLite) format using the TFLiteConverter API. Quantization from float32 to float16 was
applied to reduce the model size and improve performance. The result was a compact
2KB TFLite file, highly suitable for embedded systems.

4 Testing the TFLite Model in Colab

Using the TFLite interpreter in Google Colab, a sample input was passed to the quantized
model for inference. The input/output tensor details were printed, and the prediction
probabilities across the three classes were analyzed. Inference time was measured in
microseconds, highlighting the model’s efficiency.

TinyML 1

Minor in AI

Example Output

Predicted probabilities: [0.02, 0.95, 0.03]
Predicted class: 1
Inference time: 152µs

5 Preparing for Hardware Deployment

To deploy on ESP32, the quantized TFLite model was transformed into a C-style header
file using Python code. The file consisted of an unsigned char array representing model
bytes in hexadecimal.

const unsigned char model[] = {

0x20, 0x00, 0x00, 0x00, ...

};

This header was included in an Arduino sketch, ready for deployment.

6 Arduino IDE Setup and ESP32 Programming

The Arduino IDE was used for loading the sketch to the ESP32 board. Necessary libraries,
including TensorFlow Lite for Arduino, were installed. Key steps included:

• Initializing the interpreter with a 2KB tensor arena

• Feeding hard-coded input features

• Running inference and printing output probabilities

Hardware Inference Visualization

Time (µs)

Confidence

Predicted: Class 2

7 Deploying and Running the Model on ESP32

After selecting the appropriate board (e.g., ESP32 Dev Module) and COM port, the sketch
was uploaded. On successful flashing, the serial monitor displayed class probabilities and
inference time, e.g., 140µs. This confirmed that even small devices like ESP32 are capable
of running ML models in real time.

TinyML 2

Minor in AI

Special care was taken for hardware debugging, especially for Windows users who
needed to press the boot button during flashing. The instructor emphasized that hardware
deployments are sensitive to many real-world factors such as loose cables, power supply
issues, and inconsistent timing.

Key Takeaways

1. A small neural network trained on the Iris dataset can be effectively quantized and
deployed.

2. TensorFlow Lite enables model conversion to highly efficient formats suitable for
edge devices.

3. Quantized models are tiny in size (2KB) and achieve microsecond-level inference.

4. Arduino IDE, along with ESP32, provides a beginner-friendly platform for deploying
TinyML models.

5. Real-world deployment involves translating model logic into embedded C/C++,
configuring memory manually, and verifying performance using serial monitoring.

6. Hands-on practice, including converting models and writing C header files, is key
to mastering TinyML deployment.

TinyML 3

	Introduction
	Building and Training the Neural Network
	Model Quantization and Conversion
	Testing the TFLite Model in Colab
	Preparing for Hardware Deployment
	Arduino IDE Setup and ESP32 Programming
	Deploying and Running the Model on ESP32

