Building Lightweight
__ Architectures

Contents

S
<

Convolutional Neural Networks (CNN)

S
<

Stages of CNN

S
<

Model Building

S
<

Lightweight Models

S
<

Comparison of Model Variants

S
<

Case Study

Convolutional Neural Networks (CNN)

CNN Input layer Hidden layer

Classified image

A Aea'S

Output layer

%o E
mj

Camera Preprocessing

J
@ C
g e

Postprocessing

Reference:

https://www.analyticsvidhya.com/blog/2021/06/image-classification-using-convolutional-neural-network-with-python/

Stages of CNN

% Input Layer % Pooling
TETEVETRT S il
LLLLLLLLLL 5|2 Output
=1 L Y)
BadobEIALD ey fe] oo, 8]0
aialinei] I L
i"-,luu;‘. olslals
s EERE
ywiwywiywy v
& % Flattening
4 - ; = Flattening
2 g

Pooled Feature Map

Convolved
Feature

RIN|O|R[N|S|O]|R|R

Stages of CNN

4 Neural Network

Model Building (Transfer Learning)

> Select a Pretrained Model

> Remove the Top (Classification) Layer

> Adding Own Classifier

> Freeze Layers (optional)

> Fine-tune the Model
Domain Transfer from Use for
Image Classification ImageNet-trained CNN Medical images, fashion, loT
NLP BERT, GPT, RoBERTa Text classification, QA
Audio VGGish, YAMNet Emotion detection, sound events
Edge Al MobileNet/TinyML models | Deploying on microcontrollers

Model Building (MNIST-MobileNetV2)

% Loading data

Load and preprocess MNIST
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

train_images = np.stack([train_images] * 3, axis=-1) # Convert to 3-channel
test_images = np.stack([test_images] * 3, axis=-1)

train_images = tf.image.resize(train_images, [96, 96]) / 255.0

test_images = tf.image.resize(test_images, [96, 96]) / 255.0

% Building Model
#ommmmmmm e BASE MODEL ---=---=-=--=-=----

def build_transfer_model():
base_model = tf.keras.applications.MobileNetV2(input_shape=(96, 96, 3),
include_top=False,

weights="imagenet')
base_model.trainable = False

model = tf.keras.Sequential([
base_model,
layers.GlobalAveragePooling2D(),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')

D

return model

base_model = build_transfer_model()
s ——

Lightweight Models

% Quantization of Models

L1

float32(W1l)
L2

Xi

after pruning

Comparison of Model Variants

Using MobileNet Using SqueezeNet

Model Version

Model Size = Model Accuracy (%) Model Size Model Accuracy (%)

Base Model 10.81 MB 89.64 0.82 MB 88.94%
Quantized Model 4.58 MB 81.02 0.13 MB 91.59%
Pruned Model 9.54 MB 80.96 0.30 MB 91.58%

Case Study

% Develop a deep learning model to classify human activities (e.g., walking,
running, sitting) using accelerometer and gyroscope data — and deploy it
on a low-power microcontroller such as the Arduino Nano 33 BLE Sense.

Thank you

