
Minor in AI
TinyML

CNNs & Transfer Learning

May 28, 2025



Minor in AI

1. Convolutional Neural Networks (CNNs)

1.1 Architecture Overview

What is a CNN?

A CNN is a type of deep neural network specifically designed to process data with
grid-like topology, such as images. It mimics the visual cortex, capturing spatial
hierarchies of features through its layers.

• Input Layer: Accepts raw image data (e.g., size 28× 28× 1 for grayscale).

• Convolutional Layers: Apply filters (kernels) to extract features like edges, tex-
tures, and shapes.

• Activation Functions: Usually ReLU (Rectified Linear Unit) is applied after
convolution to introduce non-linearity.

• Pooling Layers: Perform downsampling (e.g., MaxPooling) to reduce spatial di-
mensions and computation.

• Flattening: Converts 2D outputs from pooling into a 1D vector before feeding to
dense layers.

• Fully Connected Layers: Act as a traditional neural network classifier.

• Output Layer: Gives final prediction probabilities (via softmax in classification
tasks).

Figure 1: CNN

TinyML 1



Minor in AI

Try This!

Draw the architecture of a basic CNN used for image classification on Fashion
MNIST. Label each layer and specify the input/output dimensions.

2. Transfer Learning

Transfer Learning in Action

Transfer learning involves reusing a pre-trained model (like MobileNet, VGG16,
ResNet) and adapting it to a new task. This saves time and resources and boosts
performance, especially when data is limited.

Steps to Implement Transfer Learning

1. Load a pre-trained model without its top (classifier) layers.

2. Freeze the convolutional base (optional).

3. Add new custom dense layers for your task.

4. Train the new layers on your dataset (e.g., Fashion MNIST).

Reflect

Why do we often freeze the base model when doing transfer learning? What might
happen if we don’t?

Figure 2: Tranfer Learning

TinyML 2



Minor in AI

3. Model Optimization Techniques

3.1 Quantization

• Converts model weights from float32 to float16 or int8.

• Benefit: Reduced memory footprint, faster inference.

• Useful in edge devices or mobile deployment.

Code Snippet (TensorFlow Lite Quantization)

converter = tf.lite.TFLiteConverter.from_keras_model(model)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

quantized_model = converter.convert()

3.2 Pruning

• Removes low-weight connections (neurons or edges) during training.

• Leads to sparser and smaller models.

• Often used with regularization to avoid performance degradation.

Think & Write

Compare pruning and dropout. How are they similar? How are they different in
terms of purpose and execution?

Figure 3: Pruning

TinyML 3



Minor in AI

4. Case Study: Human Activity Classification

4.1 Model Used: MobileNet V2

• Lightweight and efficient architecture.

• Combines depthwise separable convolutions with residual connections.

• Ideal for mobile and embedded devices.

4.2 Implementation Overview

• Preprocessing sensor data into time-series or spectrogram formats.

• Using MobileNetV2 as a feature extractor.

• Training a custom classifier on top.

Model Performance Insight

Compare the model size and accuracy before and after quantization and pruning.
How does performance trade off against model size?

5. Key Takeaways

1. CNNs extract hierarchical features from images using convolution and pooling.

2. Transfer learning allows reuse of powerful pre-trained models.

3. Optimization techniques like quantization and pruning make models smaller and
faster for deployment.

4. MobileNetV2 is an efficient backbone for on-device inference.

TinyML 4


