TinyOps: MLOps for TinyML

Dr Sudeepta Mishra

What is important in ML Applications?

What is important in ML Applications?

The Model

What is important in ML Applications?

A model alone is a part of the bigger picture.

Orchestrating the entire flow

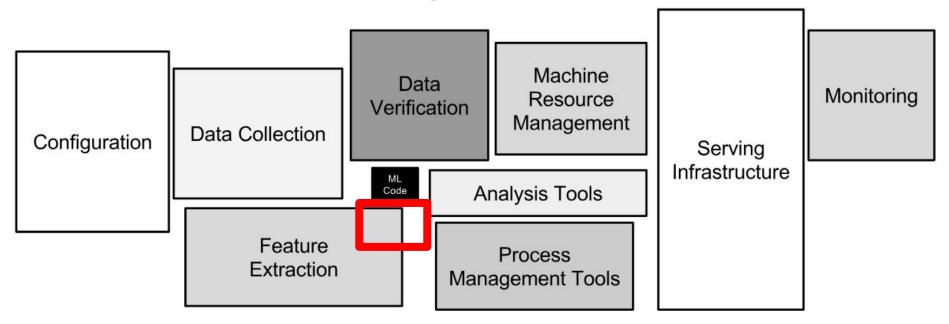
Neural Network Computation + Non Neural Network Computation

Managing Model

Managing Data

Monitoring etc.

Infrastructure Surrounding ML Systems



ImageSource: Hidden technical debt in Machine learning systems. In Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'15).

Designing an ML system

- Reliable
- Scalable
- Maintainable
- Adaptable

Different types of ML systems

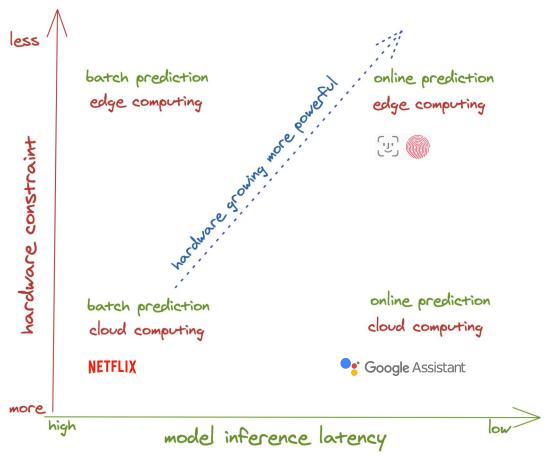
- How their ML models serve their predictions (batch prediction vs. online prediction)
- Where the majority of computation is done (edge computing vs. cloud computing)
- How often their ML models get updated (online learning vs. offline learning)

Different types of ML systems

- How their ML models serve their predictions (batch prediction vs. online prediction)
- Where the majority of computation is done (edge computing vs. cloud computing)
- How often their ML models get updated (online learning vs. offline learning)

	Batch prediction	Online prediction
Frequency	Periodical (e.g. every 4 hours)	As soon as requests come
Useful for	Processing accumulated data when you don't need immediate results (e.g. recommendation systems)	When predictions are needed as soon as data sample is generated (e.g. fraud detection)
Optimized	High throughput	Low latency
Input space	Finite: need to know how many predictions to generate	Can be infinite
Examples	 TripAdvisor hotel ranking Netflix recommendations Tripadvisor Q Explore Portland Hotels A Vacation Rentals Things to Do X Restaurants * 	 Google Assistant speech recognition Twitter feed Wakeword How to become a machine-learning engineer Unlock more features Get Started Cet Started

Future of ML: online and on-device



© 2025, Dr Sudeepta Mishra. Unauthorized use prohibited.

Offline learning vs. online learning

Harder & less common

	Offline learning	Online learning
Iteration cycle	Periodical (months)	Continual (minutes)
Batch size	batch (thousands -> millions of samples) GPT-3 125M params: batch size 0.5M GPT-3 175B params: batch size 3.2M	microbatch (hundreds of samples)
Data usage	Each sample seen multiple times (epochs)	Each sample seen at most once
Evaluation	Mostly offline evaluation	Offline evaluation as sanity check Mostly relying on online evaluation (A/B testing)
Examples	Most applications	TikTok recommendation system, Twitter hashtag trending

ML in production

ML in production: expectation

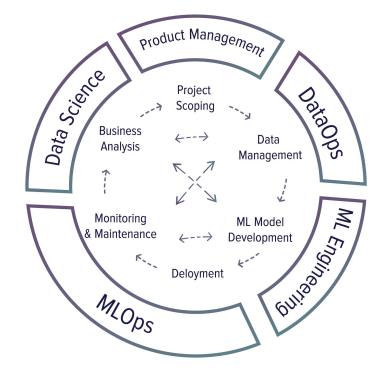
ML in production: expectation

ML in production: reality

- 1. Choose a metric to optimize
- 2. Collect data
- 3. Train model
- 4. Realize many labels are wrong -> relabel data
- 5. Train model
- 6. Model performs poorly on one class -> collect more data for that class
- 7. Train model
- 8. Model performs poorly on most recent data -> collect more recent data
- 9. Train model
- 10. Deploy model
- 11. Dream about \$\$\$
- 12. Wake up at 2am to complaints that model biases against one group -> revert to older version
- 13. Get more data, train more, do more testing
- 14. Deploy model
- 15. Pray
- 16. Model performs well but revenue decreasing
- 17. Cry
- 18. Choose a different metric
- 19. Start over

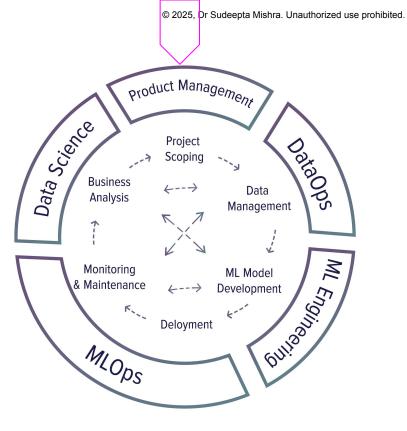
ML Project

Iterative Process



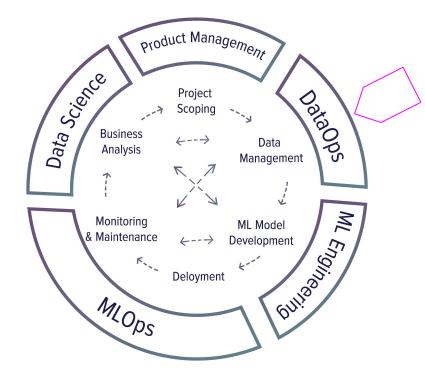
Project scoping

- Goals & objectives
- Constraints
- Evaluation
- Resources estimated and allocated



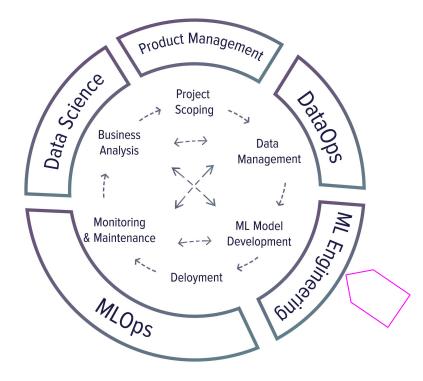
Data management

- Data sources
- Data format
- Processing
- Storage
- Data consumer
- Data controller



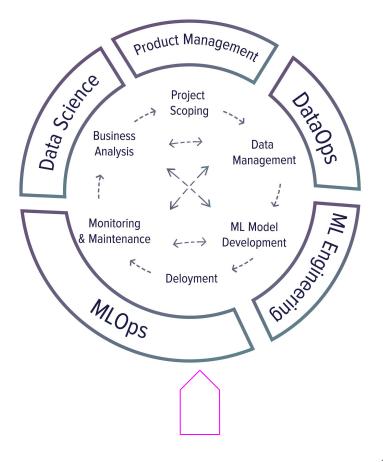
Model development

- Dataset creation
- Feature engineering
- Model training
- Offline model evaluation
- Requires the most ML knowledge



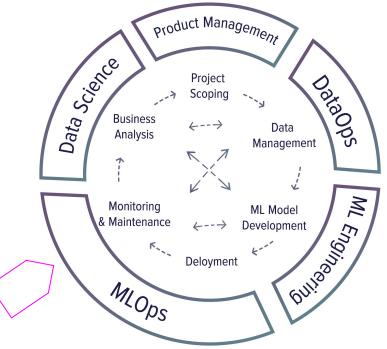
Deployment

- Deploying and serving
- Release strategies
- Online model evaluation
- Accessible to users
- Earn \$\$\$



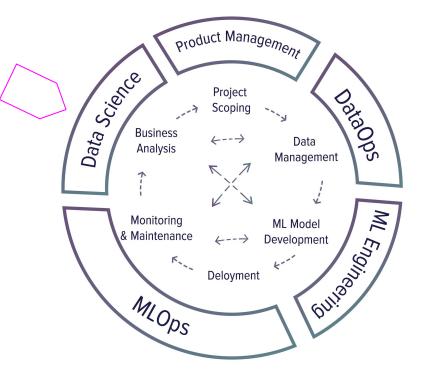
Monitoring & maintenance

- Model performance & data monitoring
- Model retraining
- Model updates



Business analysis

- User experience
- Evaluate model performance against business performance



Your Great Idea: Predictive Maintenance

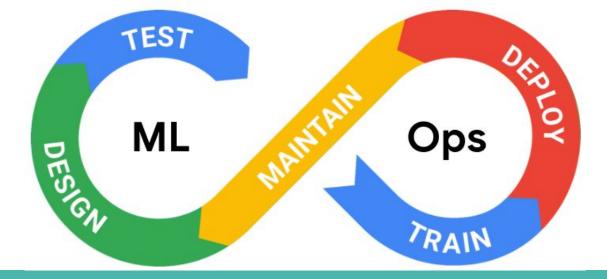
Develop

Data

Train

Manage

Privacy



Machine Learning Operations (MLOps)

Practices and tools that streamline, automate, and unify the process of taking machine learning models from development to production, and maintaining them over time.

Purpose:

- Bridges the gap between ML development and operational deployment
- Involves collaboration between data scientists, ML engineers, DevOps, and IT
- Ensures models are reliable, scalable, and maintainable in real-world environments

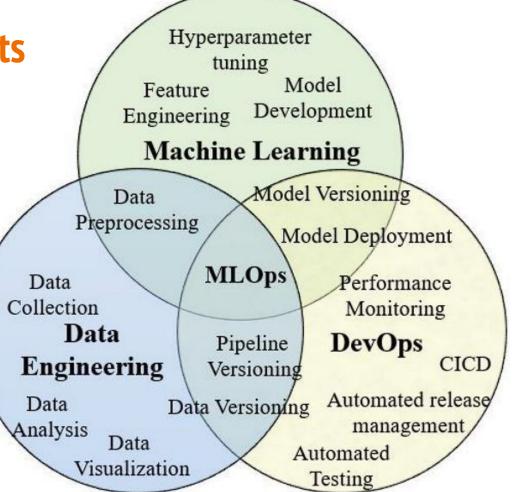
Key Benefits

- Faster and more reliable model deployment
- Automated workflows (CI/CD for ML)
- Improved monitoring, validation, and governance
- Reduces manual errors and technical debt

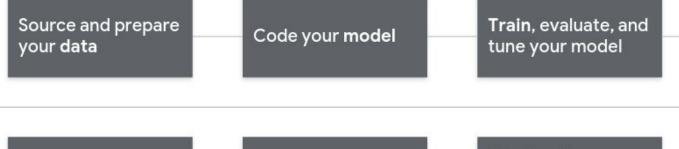
MLOps: Key Components

MLOps means:

- Running end-to-end
- Managing Complexity
- Evaluating Results
- Improving Models
- Tracking deployment



ML Workflow

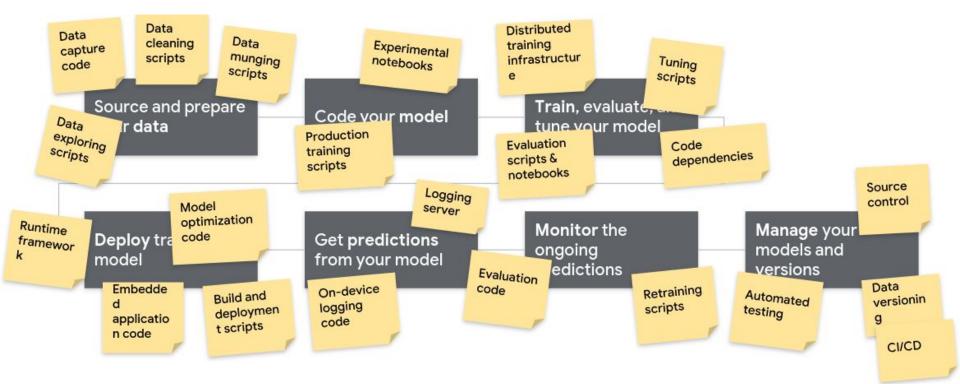


Deploy trained model

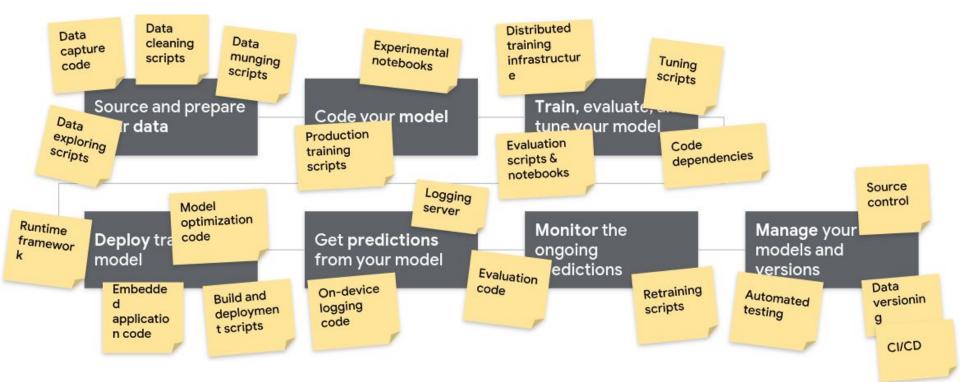
Get **predictions** from your model

Monitor the ongoing predictions Manage your models and versions

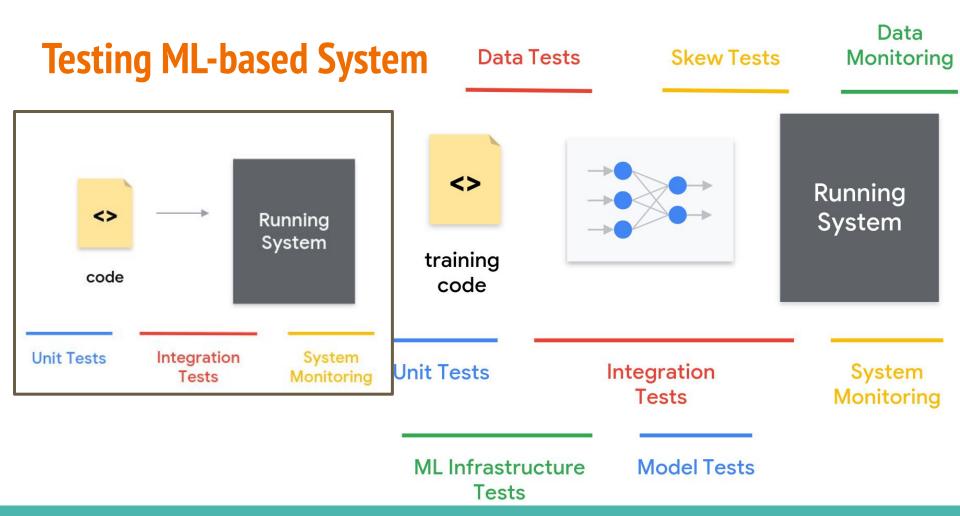
ML Workflow



ML Workflow



MLOps = ML Workflow + Automation



Steps

Data & model management

ML development

Training operationalization

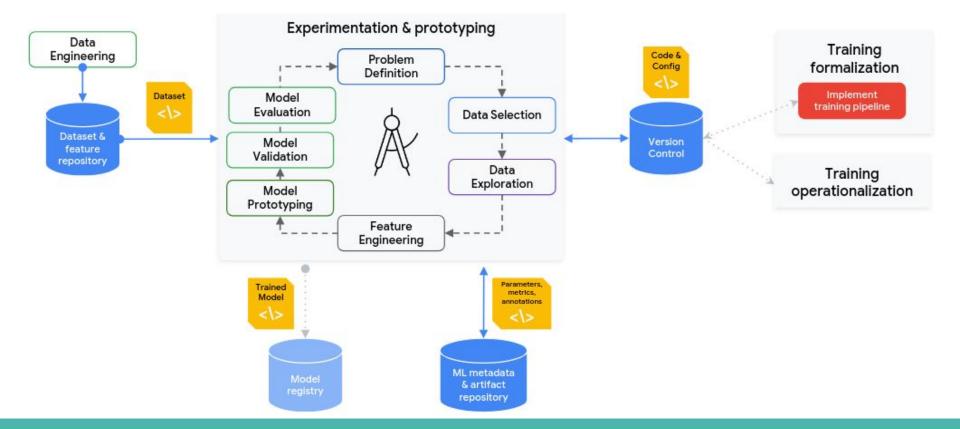
Continuous training

Model deployment

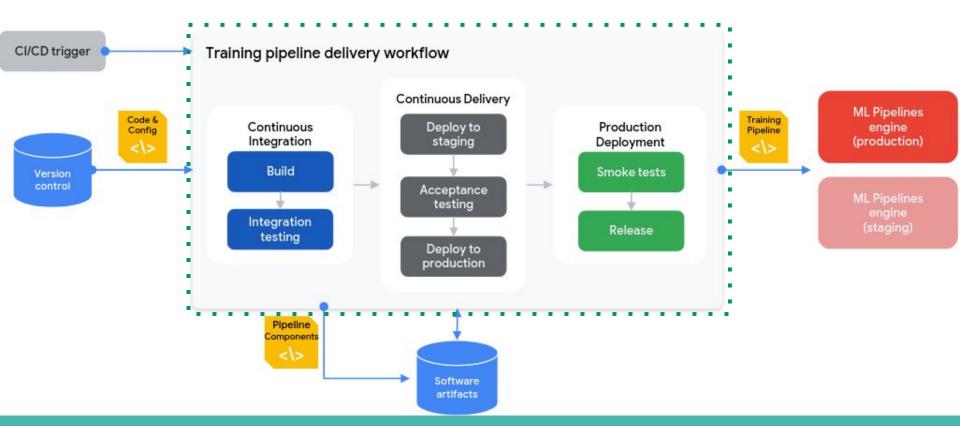
Prediction serving

Continuous monitoring

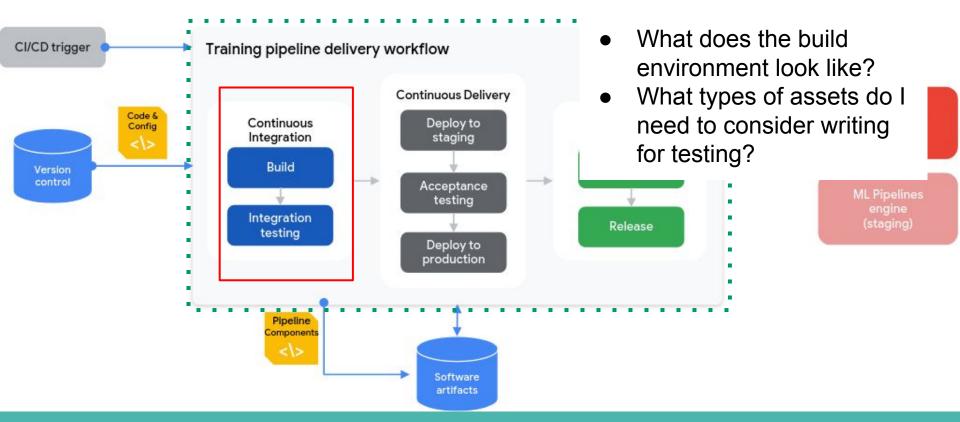
MLOps: ML Development



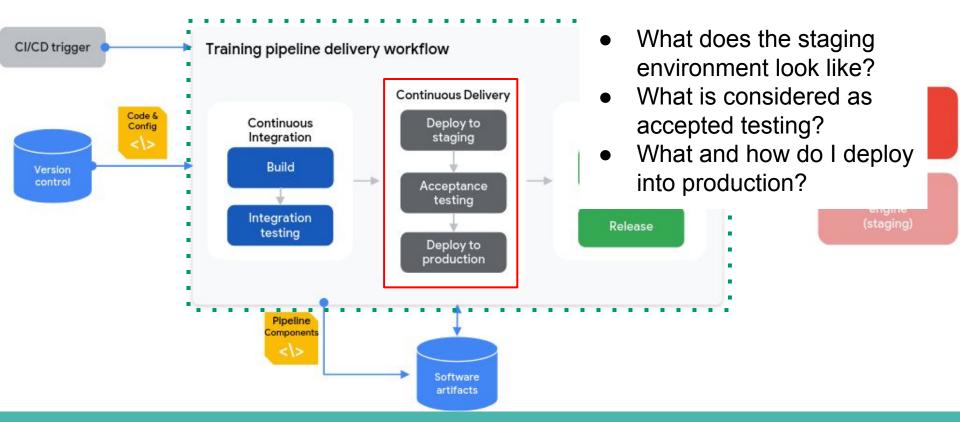
MLOps: Training Operationalization



MLOps: Training Operationalization



MLOps: Training Operationalization



MLOps: Training Operationalization

Training pipeline delivery workflow

CI/CD trigger

Version

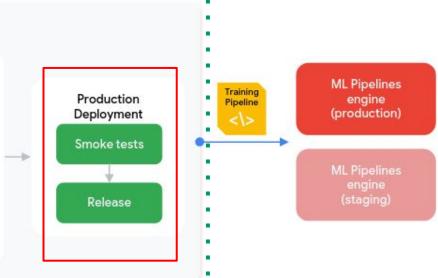
Code &

Config

- What does it mean to do a smoke test for embedded machine learning systems?
- How can you do a production release with TinyML devices?

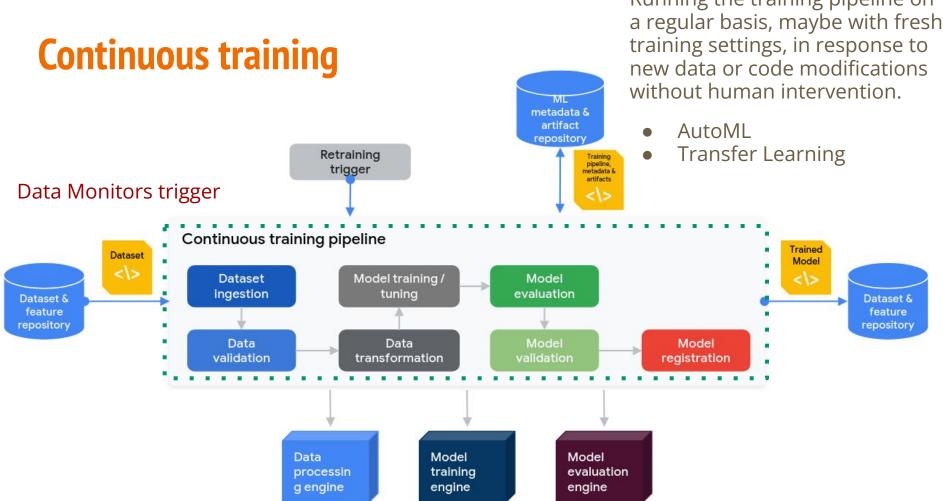
Software artifacts

Pipeline Components



Deployment Challenges

Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE



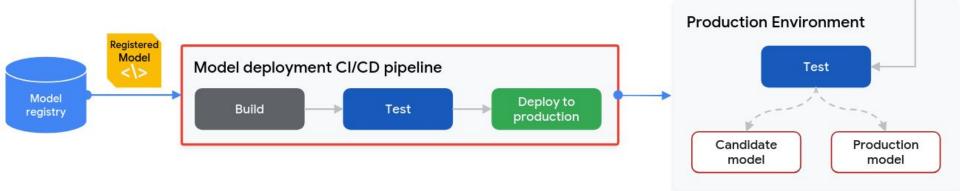
© 2025, Dr Sudeepta Mishra. Unauthorized use prohibited. Running the training pipeline on a regular basis, maybe with fresh

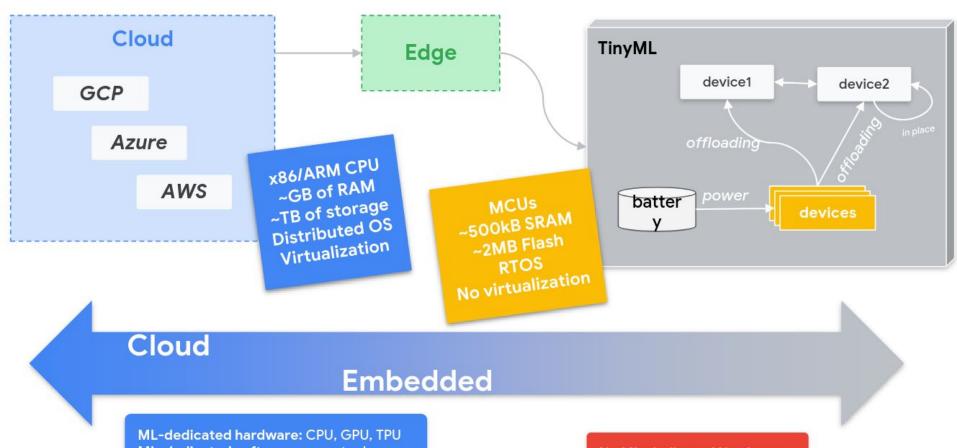
metadata & artifact repository

Model Deployment

Packaging, testing, and deploying a model for online experimentation or end users.

Software Stacks and Hardware Environments

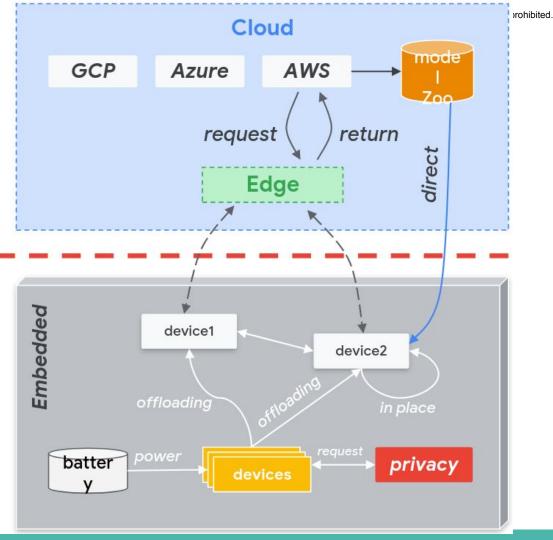




ML-dedicated hardware: CPU, GPU, TPU ML-dedicated software: many tools ML Tasks → Data collection and preprocessing, data transformation, model training, model deployment, inference

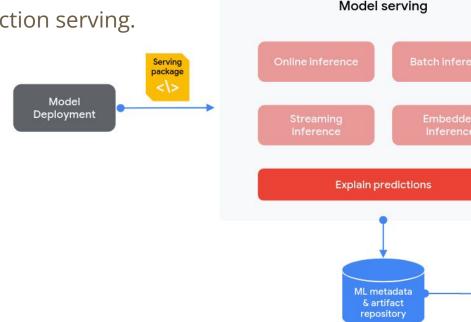
No ML-dedicated Hardware No ML-dedicated software ML Tasks → Inference Decouple the cloud development environment from the embedded model deployment environment

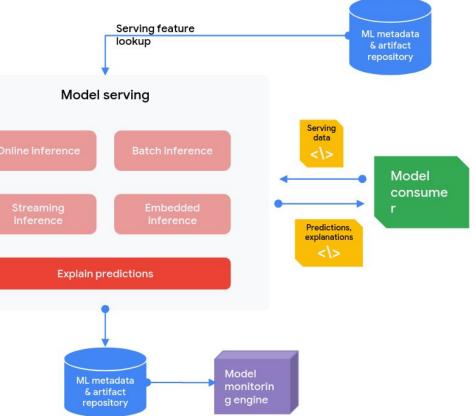
Simplify deployment of ML models to tiny devices and develop an abstraction



Prediction Serving

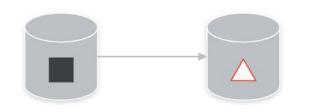
Serving the model that is deployed in production for inference is known as prediction serving.





Scenario

Metric



Batch inference (e.g. photo sorting app)

Throughput

Online inference (e.g. translation app) QPS

subject to latency bound

Streaming inference (e.g. multiple camera driving assistance) Number streams

subject to latency bound

Embedded inference

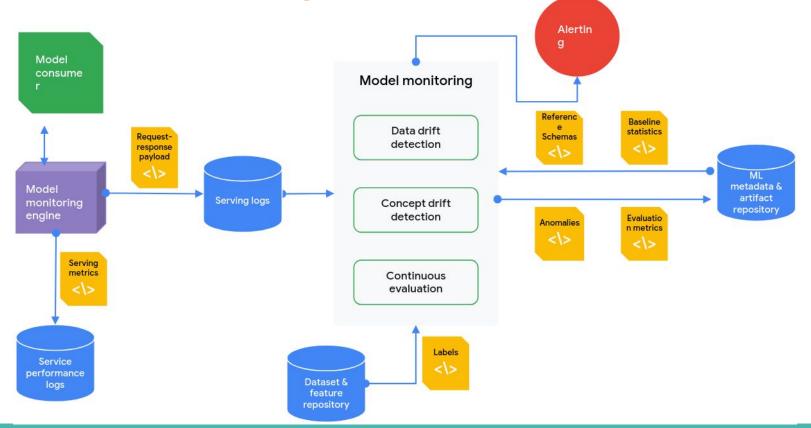
(e.g. cell phone augmented vision) Latency

Continuous Monitoring

Continuous monitoring refers to keeping track of a deployed model's effectiveness and efficiency.

Model Performance - Accuracy Rate

Continuous Monitoring



Drift Types

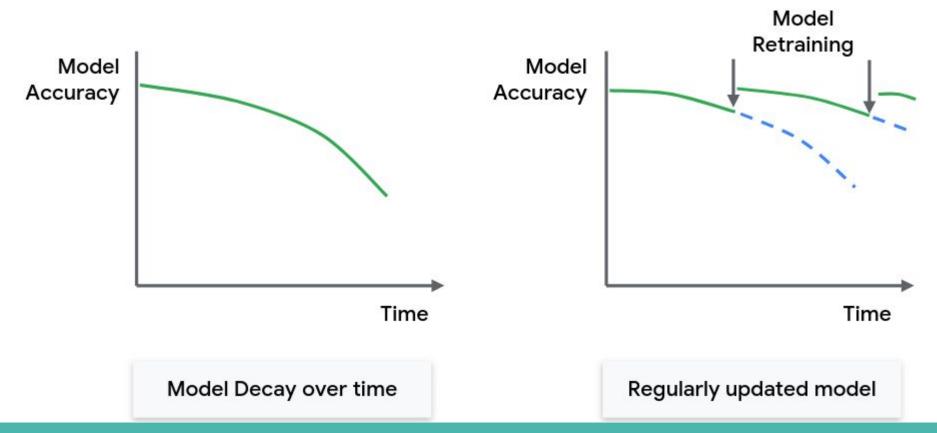
Concept Drift

- the affected old data needs to be relabeled
- Concept drift in machine learning is when the relationship between the input and target changes over time.

Data Drift

- enough new data needs to be labeled
- Data drift is a change in the distribution of data over time.

Goal of Continuous Training



Continuous Monitoring for TinyML

- Monitoring may not always be a feasible option
 - Low power communication protocol
 - Device isn't wifi-enabled
- Monitoring opens up security and privacy risks

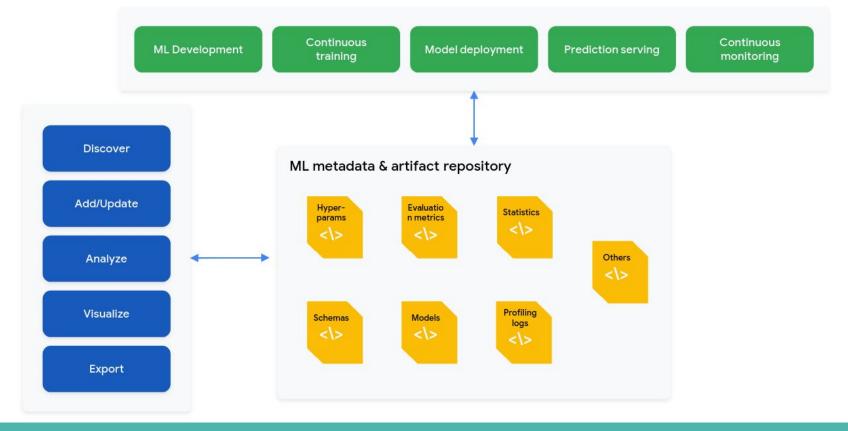
Continuous Monitoring for TinyML

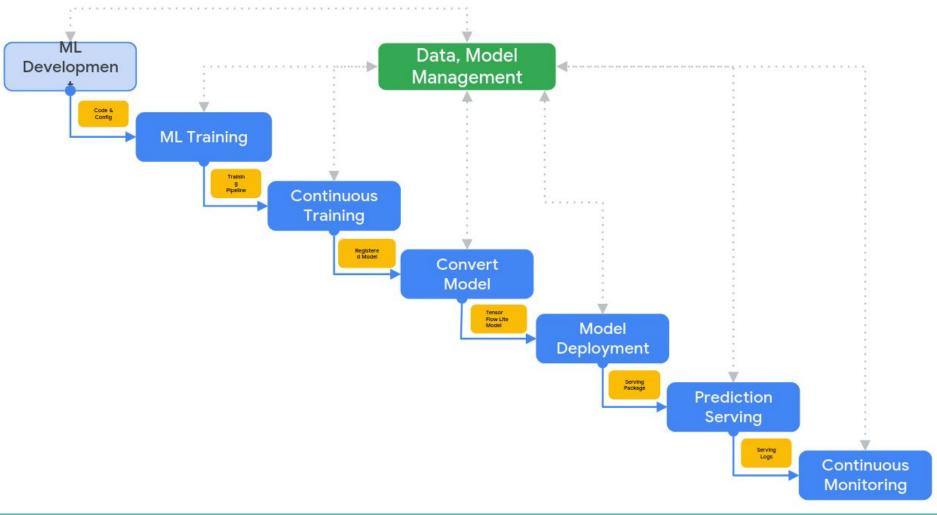
- Monitoring may not always be a feasible option
 - Low power communication protocol
 - Device isn't wifi-enabled
- Monitoring opens up security and privacy risks
- How can we enable **Continuous Monitoring** to enable **Continuous Training** without moving the data off the endpoint tiny ML device?

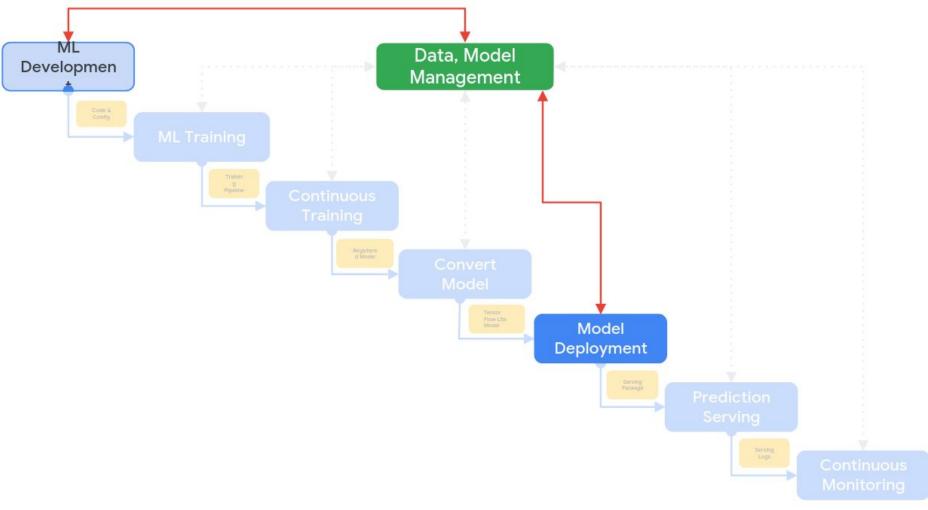
Data & Model Management

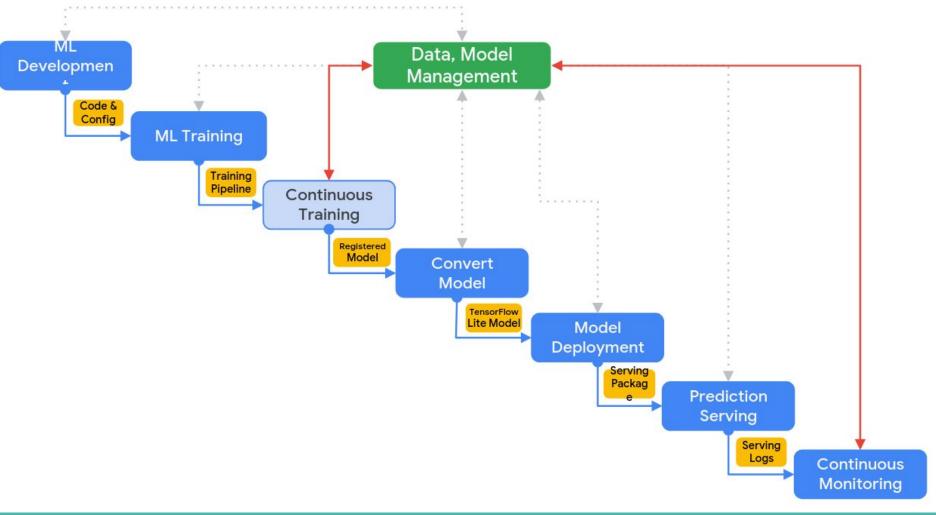
Data and model management is a central, cross-cutting function for governing ML artifacts to support ability, traceability, and compliance. Data and model management can also promote shareability, reusability, and discoverability of ML assets.

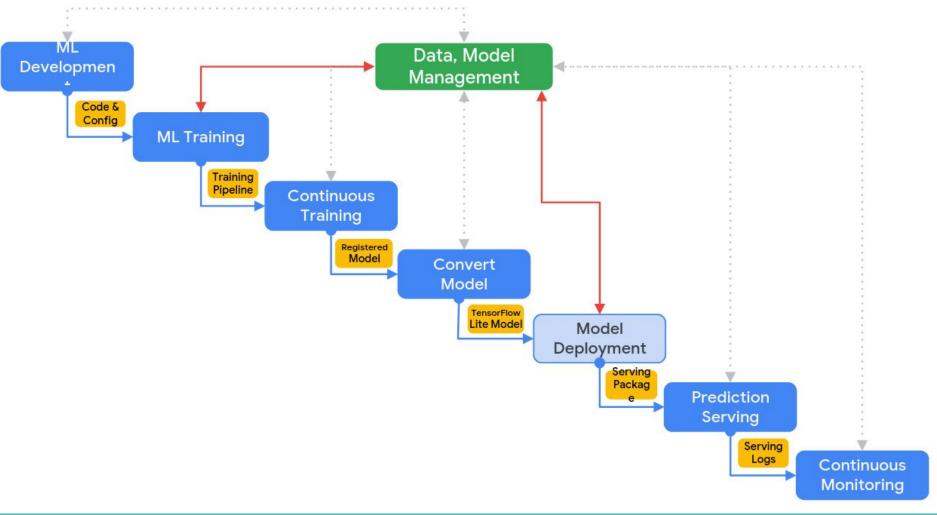
Data & Model Management

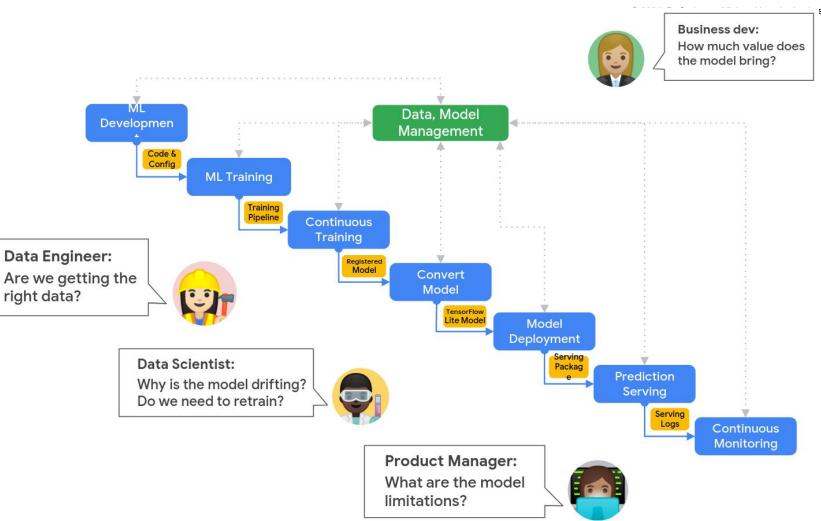












Question

TensorFlow and TensorFlow Lite support the same set of operations.

- A. True, TensorFlow Lite is simply a more optimized version of TensorFlow.
- B. False, TensorFlow Lite is an optimized subset of TensorFlow designed for mobile inference.

Answer

TensorFlow and TensorFlow Lite support the same set of operations.

- A. True, TensorFlow Lite is simply a more optimized version of TensorFlow.
- B. False, TensorFlow Lite is an optimized subset of TensorFlow designed for mobile inference.

Question

Transfer learning can be used to:

- A. Shorten the training process by re-using many layer values from an existing model.
- B. Repurpose a dataset by extracting many values for another application.
- C. Train models in the cloud and then deploy them on device.

Answer

Transfer learning can be used to:

- A. Shorten the training process by re-using many layer values from an existing model.
- B. Repurpose a dataset by extracting many values for another application.
- C. Train models in the cloud and then deploy them on device.

© 2025, Dr Sudeepta Mishra. Unauthorized use prohibited.

Thank You