
Robotics: Kinematics

Minor in AI - IIT ROPAR

31 May, 2025

1 What is Forward Kinematics?

Definition

Forward Kinematics (FK) is the process of determining the position and orientation (pose) of a
robot’s end-effector (the tool or hand) based on known joint parameters. These joint parameters
include angles for revolute joints and displacements for prismatic joints.

In other words, FK answers the question:

“If we know the configuration of all the robot’s joints, where is the end-effector located and
how is it oriented in space?”

Why Forward Kinematics Matters

• Robot Simulation and Animation: FK allows visualization of robot motion given joint move-
ments.

• Motion Planning: Understanding how changes in joints affect the position of the tool.

• Foundation for Inverse Kinematics and Dynamics: FK results are prerequisites for calcu-
lating joint commands from desired end-effector poses or forces.

Inputs to Forward Kinematics

• Joint Variables: The values specifying each joint’s position:

– Revolute joints: Angles (e.g., θ1, θ2, . . .)

– Prismatic joints: Linear displacements (e.g., d1, d2, . . .)

• Link Parameters: Geometric constants defining robot structure such as:

– Lengths of links

– Twist angles

– Offsets

Outputs of Forward Kinematics

• The pose of the end-effector:

– Position in 3D space (e.g., x, y, z)

– Orientation (e.g., rotation matrix, Euler angles, quaternions)

• Usually expressed with respect to the world or base frame.

Properties of Forward Kinematics

• Deterministic: For every valid set of joint parameters, FK produces a unique end-effector pose.

• Direct mapping: From joint space to Cartesian space.

1



Methods for Forward Kinematics

Several approaches exist to calculate FK:

• Geometric Method: Uses direct geometric and trigonometric relations based on robot shape.

– Intuitive for simple robots.

– Can get complicated for robots with many degrees of freedom.

• Denavit–Hartenberg (DH) Convention:

– A systematic, matrix-based method.

– Assigns coordinate frames to each link and expresses transformations as 4×4 matrices.

– Widely used in industrial robotics for serial manipulators.

– Easy to implement and generalize to any robot with serial links.

• Product of Exponentials (PoE) Method:

– Advanced approach using screw theory and Lie algebra.

– More general and mathematically elegant.

– Useful for complex robotic systems and theoretical analysis.

In this course, the focus is on the Denavit–Hartenberg Method, due to its practicality and
widespread adoption in industrial robotics.

2 Overview of the Denavit–Hartenberg (DH) Method

Purpose

The Denavit–Hartenberg (DH) method is a systematic procedure designed to compute Forward Kine-
matics for serial-link robots. It transforms the complex problem of determining the pose of a robot’s
end-effector into a sequence of manageable matrix operations.

What the DH Method Involves

• Frame Assignment Rules: Attach coordinate frames to each joint and link according to a
standardized convention.

• DH Parameters: Extract four geometric parameters per link that describe the relative position
and orientation between consecutive frames.

• DH Transformation Matrix: Construct a 4×4 homogeneous transformation matrix from these
parameters for each joint.

• Chaining Transformations: Multiply all these matrices sequentially to compute the pose of the
end-effector relative to the base frame.

The DH method simplifies 3D motion analysis into repeated matrix multiplications, making the
kinematic equations easier to handle both analytically and computationally.

DH Frame Assignment Rules

To apply the DH method, follow these four essential steps to assign coordinate frames to each robot link:

1. Assign the zi axis:

• Align zi with the axis of motion of joint i.

• For a revolute joint, zi is the axis of rotation.

• For a prismatic joint, zi is the direction of translation.

2



2. Assign the xi axis:

• Make xi perpendicular to both zi−1 and zi.

• xi points along the common normal between zi−1 and zi.

3. Place the origin of frame i:

• At the intersection of the axes zi and xi.

• If they do not intersect, place it at the joint location.

4. Define the yi axis:

• Complete a right-handed coordinate system by setting

y⃗i = z⃗i × x⃗i

DH Parameters and Their Geometric Meaning

For each link and joint pair (i.e., the transformation from frame i−1 to frame i), we define four Denavit–
Hartenberg parameters:

• θi: Joint angle — rotation about the zi−1 axis.

– Variable for revolute joints.

• di: Link offset — translation along the zi−1 axis.

– Variable for prismatic joints.

• ai: Link length — the distance between zi−1 and zi measured along the xi axis (common normal
length).

• αi: Link twist — the angle between the zi−1 and zi axes measured about the xi axis.

Summary of DH Parameters and Joint Types

• For a revolute joint: θi is variable, while di is constant.

• For a prismatic joint: di is variable, while θi is constant.

These four parameters (θi, di, ai, αi) fully specify the relative transformation from frame i− 1 to
frame i.

Visualizing DH Parameters

• di: Offset along the previous z-axis to reach the common normal.

• θi: Angle about the previous z-axis between the old x and new x axes.

• ai: Length of the common normal (distance between zi−1 and zi axes).

• αi: Angle about the common normal (the x-axis), from the old z axis to the new z axis.

3



3 How DH Parameters Become Transformation Matrices

To compute the transformation from frame i−1 to frame i, the Denavit–Hartenberg (DH) method breaks
down the process into four elementary transformations. Each corresponds to either a rotation or a
translation along one of the coordinate axes defined by the frames. By applying these transformations
in sequence, we capture both the rotation and translation required to move from one joint frame to the
next.

Step 1: Rotation about zi−1 by θi
This rotation accounts for the joint angle θi, which is variable for revolute joints. It represents the

rotation of frame i around the previous frame’s z-axis.

Rz(θi) =


cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1


- This matrix rotates any vector by θi around the z-axis. - The rotation affects the x and y coordinates

while leaving z unchanged. - It corresponds to the ”turning” motion of a revolute joint.

Step 2: Translation along zi−1 by di
This translation moves the frame along the z-axis by a distance di. For prismatic joints, di is variable;

for revolute joints, it is constant.

Tz(di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1


- This matrix shifts the position along the z-axis without changing orientation. - It models the linear

displacement for prismatic joints or the fixed offset along the joint axis.

Step 3: Translation along xi by ai
This translation moves the frame along the xi axis by the link length ai. This length is the distance

between the zi−1 and zi axes measured along the common normal.

Tx(ai) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1


- This moves the origin along the x-axis to the next joint’s axis location. - It captures the linear offset

(link length) between consecutive joint axes.

Step 4: Rotation about xi by αi

This rotation accounts for the link twist αi, which is the angle between the zi−1 and zi axes measured
about xi.

Rx(αi) =


1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1


- This rotates the coordinate frame around the x-axis, aligning zi with the next joint axis. - It

accounts for the twist or angular displacement between links.

Combining the Four Transformations
The total transformation matrix from frame i− 1 to frame i is obtained by matrix multiplication of

these four elementary transformations in the specific order:

T i−1
i = Rz(θi) · Tz(di) · Tx(ai) ·Rx(αi)

4



- The order is critical since matrix multiplication is not commutative. - This combined matrix encap-
sulates the rotation and translation to move from frame i− 1 to i. - It is a homogeneous transformation
matrix, representing both rotation (upper-left 3× 3 block) and translation (upper-right 3× 1 vector).

Interpretation of the Sequence:

• First, rotate about the previous joint axis zi−1 by the joint angle θi.

• Next, translate along that same axis by the joint offset di.

• Then translate along the new xi axis by the link length ai.

• Finally, rotate about the xi axis by the link twist αi.

Each transformation builds on the last, progressively repositioning and reorienting the coordinate
frame from one joint to the next.

This systematic approach simplifies the complex 3D kinematics problem into repeatable matrix mul-
tiplications, enabling efficient and accurate computation of the robot’s configuration.

4 Final DH Transformation Matrix

By multiplying the four elementary transformations

T i−1
i = Rz(θi) · Tz(di) · Tx(ai) ·Rx(αi),

we obtain the final Denavit–Hartenberg transformation matrix between frames i− 1 and i:

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1


Interpretation of Each Row:

• Rows 1–3: These rows contain the rotation and translation components.

– The first three columns form the 3× 3 rotation matrix R, describing orientation change from
frame i− 1 to frame i.

– The fourth column is the translation vector d = [ai cos θi, ai sin θi, di]
T , describing the

position offset between the frames.

• Row 4: Always [0 0 0 1], this row preserves homogeneous coordinates for matrix multiplica-
tion.

Using the Transformation Matrices:
To find the pose of the end-effector relative to the base frame (frame 0), multiply all individual

transformations from the base up to the last joint n:

T 0
n = T 0

1 · T 1
2 · T 2

3 · · ·Tn−1
n

- Each T i−1
i is the DH transformation matrix for joint i. - The product T 0

n gives the full forward
kinematics: the position and orientation of the end-effector in the base frame. - This matrix multiplication
combines all joint rotations and link translations in sequence.

Summary:
- The DH transformation matrix succinctly captures both rotation and translation between two

consecutive robot links. - It allows a modular, repeatable approach for serial manipulators of any length.
- By chaining these matrices, one can compute the overall robot configuration efficiently.

5



5 Final DH Transformation Matrix

By multiplying the four elementary transformations

T i−1
i = Rz(θi) · Tz(di) · Tx(ai) ·Rx(αi),

we obtain the final Denavit–Hartenberg transformation matrix between frames i− 1 and i:

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1


Interpretation of Each Row:

• Rows 1–3: These rows contain the rotation and translation components.

– The first three columns form the 3× 3 rotation matrix R, describing orientation change from
frame i− 1 to frame i.

– The fourth column is the translation vector d = [ai cos θi, ai sin θi, di]
T , describing the

position offset between the frames.

• Row 4: Always [0 0 0 1], this row preserves homogeneous coordinates for matrix multiplica-
tion.

Using the Transformation Matrices:
To find the pose of the end-effector relative to the base frame (frame 0), multiply all individual

transformations from the base up to the last joint n:

T 0
n = T 0

1 · T 1
2 · T 2

3 · · ·Tn−1
n

- Each T i−1
i is the DH transformation matrix for joint i. - The product T 0

n gives the full forward
kinematics: the position and orientation of the end-effector in the base frame. - This matrix multiplication
combines all joint rotations and link translations in sequence.

Summary:
- The DH transformation matrix succinctly captures both rotation and translation between two

consecutive robot links. - It allows a modular, repeatable approach for serial manipulators of any length.
- By chaining these matrices, one can compute the overall robot configuration efficiently.

6 What is Inverse Kinematics?

Definition: Inverse Kinematics (IK) is the process of computing the joint parameters (angles or dis-
placements) needed for the robot’s end-effector to reach a specified pose — that is, a desired position
and orientation in space.

Why It Matters:

• Enables robots to plan and execute movements to achieve specific goals.

• Essential for motion planning, control, and teleoperation tasks.

Inputs: Desired end-effector pose — both position and orientation.
Outputs: Joint variables:

• Joint angles for revolute joints.

• Linear displacements for prismatic joints.

Forward Kinematics vs. Inverse Kinematics:

• Forward Kinematics (FK): Maps joint variables to end-effector pose (straightforward, deter-
ministic).

• Inverse Kinematics (IK): Maps end-effector pose back to joint variables (more complex and
often challenging).

6



Challenges in Inverse Kinematics – The Solution Space

IK is inherently more complex due to the nature of its solution space:

1. Multiple Solutions: A single end-effector pose may correspond to multiple valid joint configu-
rations. Example: A 2-link planar arm can reach the same point with an elbow-up or elbow-down
posture.

2. No Solution: The target pose might lie outside the robot’s reachable workspace, making the IK
problem unsolvable for that pose.

3. Infinite Solutions (Redundancy): In robots with more degrees of freedom (DOF) than task
dimensions (e.g., a 7-DOF arm performing a 6-DOF task), infinite solutions exist for the same
end-effector pose.

4. Nonlinear Equations: IK involves solving nonlinear trigonometric equations that may have
multiple roots or require iterative numerical methods. These nonlinearities make finding solutions
challenging and computationally intensive.

This complexity motivates the development of various IK solution methods, such as analytical ap-
proaches, numerical solvers, and optimization-based techniques.

7 Inverse Kinematics – Methods Overview

Inverse Kinematics (IK) can be approached using various methods depending on the robot’s complexity,
degrees of freedom, and required precision:

1. Geometric (Trigonometric) Method:

• Solves IK by applying classical geometry using laws of sines and cosines.

• Best suited for simple planar robots, such as a 2-link robotic arm.

• Advantages: Intuitive, visual, and computationally efficient.

2. Algebraic Method:

• Involves symbolically inverting the Forward Kinematics equations.

• Requires solving systems of nonlinear equations involving trigonometric functions.

• Well-suited for robots with low degrees of freedom.

• Scalable and often supported by symbolic computation software.

3. Numerical (Iterative) Methods:

• Use numerical techniques such as the Jacobian inverse, Jacobian pseudoinverse, or optimiza-
tion algorithms.

• Can handle complex robot geometries, redundant DOFs, and constraints.

• Typically require an initial guess and iterative refinement.

• May not always converge or guarantee a global solution.

4. Learning-Based Methods:

• Employ neural networks, regression models, or other machine learning techniques to approx-
imate IK mappings.

• Offer fast inference after training, useful for real-time control or robots with many DOFs.

• May suffer from limitations in accuracy and generalization to unseen poses.

7


	What is Forward Kinematics?
	Overview of the Denavit–Hartenberg (DH) Method
	How DH Parameters Become Transformation Matrices
	Final DH Transformation Matrix
	Final DH Transformation Matrix
	What is Inverse Kinematics?
	Inverse Kinematics – Methods Overview

