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1 Introduction to Kinematics in Robotics

Kinematics is a branch of classical mechanics that deals with the geometry of motion of objects
without considering the forces that cause this motion. In the context of robotics, robot kinematics is
the study of motion of robotic manipulators with respect to time, focusing solely on the positional and
rotational aspects of its links and joints.

In robotics, kinematics helps us answer the fundamental question:
“Where is the robot’s end-effector located in space, given a set of joint parameters?”

This question leads to the core kinematic problems: Forward Kinematics (FK) and Inverse
Kinematics (IK).

2 Key Elements of Robot Kinematics

Robot manipulators are typically made up of a combination of the following elements:

e Links: These are rigid bodies that connect two joints. They define the spatial structure of the
manipulator.

e Joints: These are the points or axes at which relative motion between links is allowed. Common
joint types include:

— Revolute Joints: Allow rotational motion (like hinges).

— Prismatic Joints: Allow translational motion (like sliders).

e Degrees of Freedom (DoF'): The number of independent joint parameters that can be varied
to configure the robot. For instance:

— A revolute joint contributes one rotational DoF.

— A prismatic joint contributes one translational DoF.

3 Types of Kinematics in Robotics

3.1 Forward Kinematics (FK)

e Definition: Forward Kinematics determines the position and orientation (pose) of the end-effector
given the joint parameters (angles or displacements).

e Input:

— Length and geometry of each link

— Angle of each revolute joint or displacement of each prismatic joint
e Output:

— The spatial pose of the end-effector, typically in Cartesian coordinates (e.g., x,y, z) and ori-
entation (e.g., Euler angles or a rotation matrix)



e Applications:

— Animation and simulation

— Visualization and monitoring of motion
e Characteristics:

— Deterministic: One unique solution exists for a given set of joint variables.

— Computationally straightforward: Uses transformation matrices and trigonometry.

3.2 Inverse Kinematics (IK)

e Definition: Inverse Kinematics determines the joint parameters required to achieve a desired pose
of the end-effector.

e Input:

— Length and geometry of each link

— Desired pose of the end-effector (position and orientation)
e Output:

— Joint angles (for revolute joints) or joint displacements (for prismatic joints)
e Applications:

— Motion planning
— Robot control and automation

— Grasping and manipulation tasks
e Characteristics:

— Often complex: Involves solving non-linear equations.
— May have:

* No solution (when the target is unreachable)
* A unique solution
* Multiple solutions (due to redundancy or symmetry)

— Requires numerical or analytical techniques.

4 Comparison: Forward vs Inverse Kinematics

Aspect Forward Kinematics (FK) Inverse Kinematics (IK)

Description | Joint parameters — End-effector pose Desired pose — Joint parameters

Input Joint angles or displacements Desired position and orientation

Output Position and orientation of end-effector | Joint values to achieve the pose
Complexity | Straightforward (uses geometry) Often complex (non-linear equations)
Solvability | Always has a unique solution May have multiple, unique, or no solutions
Application | Visualization, animation Motion planning, control, grasping

5 Coordinate Frames and Spatial Representation

Why Coordinate Frames?

Robots function in a three-dimensional (3D) environment. In order to accurately describe and compute
their movements, every component—whether a link, joint, or end-effector—must have its position and
orientation described with respect to a defined reference. This is achieved using coordinate frames.



Coordinate Frame Definition

A coordinate frame is a reference system used to represent spatial positions and orientations. It
consists of:

e An origin point in space.
e Three mutually perpendicular axes:

— X-axis
— Y-axis

— Z-axis

Any position or orientation in 3D space can be expressed with respect to such a frame.

Common Coordinate Frames in Robotics
Robotic systems make use of several important coordinate frames to define positions and transformations:
e Base Frame:

— Fixed to the robot’s base or ground.

— Serves as the primary reference for all other transformations.
e Tool Frame:

— Attached to the robot’s end-effector (e.g., a gripper or welding tool).

— Moves with the end-effector.
e Intermediate Frames:

— Defined at various joints or along links.

— Useful for step-by-step transformations between the base and tool frame.

World Frame vs Local Frame
Understanding spatial representation also requires distinguishing between world and local frames:
e World Frame (Global Frame):

— A fixed frame, often defined by the environment (e.g., lab floor or workspace table).

— Used as a universal reference for comparing different robot positions and movements.
e Local Frame (Body Frame):

— Moves along with the robot or its individual parts.

— Describes motion or configuration from the perspective of a specific robot component.

Importance in Robotics

Coordinate frames allow precise mathematical modeling of:
e Kinematic chains: by chaining transformations from one frame to another.
e Trajectory planning: by expressing paths in a consistent coordinate system.
e Sensor integration: by converting sensor data into the appropriate reference frame.

Without a consistent frame representation, it would be impossible to define motion, apply control,
or interpret measurements accurately.



6 End-Effector Orientation Using Rotation Matrices

Objective: Determining End-Effector Orientation Relative to an Object

In robotic manipulation and perception tasks, it is often necessary to determine how the robot should
orient its end-effector with respect to an object in the environment. This requires calculating a rotation
matrix that aligns the robot’s tool frame (end-effector) with the object’s frame.

Given: The following rotation matrices are provided:

e RL: Rotation from inertial (world) frame to camera frame.
° Rg: Rotation from camera frame to object frame.
e RL: Rotation from inertial (world) frame to robot base frame.

e RB: Rotation from base frame to end-effector frame.

Objective: Compute the orientation of the end-effector relative to the object frame, i.e., find RE.

Transformation Chaining

To find Rg, we utilize the chaining of transformations based on the composition of rotation matrices.
The required transformation is obtained by:

RG=RG-R;-(Rp)" - (RE)'
Explanation of the Chain:
° Rg: Rotates from camera frame to object frame.
. Ré: Rotates from inertial frame to camera frame.
e (RL)T: Transposes the inertial-to-base rotation, giving base-to-inertial.
e (RE)T: Transposes the base-to-end-effector rotation, giving end-effector-to-base.
Each transpose represents an inverse rotation since rotation matrices are orthogonal: R™' = RT.

This formula effectively transforms the object’s orientation into the end-effector’s frame.

Rotation Matrix Convention

What does a rotation matrix do?
A rotation matrix RE is used to express a vector originally defined in frame B in terms of frame A.

Vg = le -Vp
Interpretation:
e vp: Vector expressed in frame B.
e v4: Same vector expressed in frame A.
e RE: Rotation matrix that transforms from frame B to frame A.
Indexing Convention:
e The subscript indicates the frame in which the vector is currently expressed.
e The superscript indicates the frame into which the vector should be re-expressed.

e The rotation matrix R therefore transforms or reorients a vector from frame B into frame A.



Why This Matters

In robotic tasks involving visual servoing, grasping, or aligning tools with targets, precise control of
orientation is critical. By chaining transformations through known frames (camera, inertial, base, etc.),
robots can compute how to move their end-effector to match the orientation of an object detected in
sensor data.

This mathematical approach ensures:

e Accurate alignment and grasping
e Coordination between sensors and actuators

e Proper execution of complex motion planning tasks

7 Moving Between Frames Using Rotation Matrices

Problem Statement

In robotics, it is often necessary to express a vector or an orientation that is originally defined in one
frame (e.g., the end-effector frame FE) in terms of another frame (e.g., the object frame O). However, a
direct transformation Rg from the end-effector frame to the object frame may not be available. Instead,
we may have access to a sequence of intermediate frames and their corresponding rotation matrices.

Goal: Given a chain of known rotations, compute the composite rotation matrix that transforms a
vector from frame E (end-effector) into frame O (object).
Step-by-Step Transformation Path

To transform a vector from frame F to frame O, we follow a multi-step process through intermediate
frames. The transformation chain is:

RE =RG-RG-(Rp)' - (RE)'
Let us now understand each step in detail.
Step 1: Convert from End-Effector Frame E to Base Frame B
Apply (RE)"
e The matrix R2 represents the rotation from base frame B to end-effector frame E.

e Since we are going in the reverse direction (from F to B), we use the transpose (or inverse) of this
matrix.

e This step re-expresses a vector from end-effector coordinates into base coordinates.

Step 2: Convert from Base Frame B to Inertial Frame [
Apply (Rp)"
e The matrix RL gives the orientation of the base frame with respect to the inertial (world) frame.
e To move from base to inertial (i.e., reverse direction), we again apply the transpose.

e This step now expresses the vector in terms of the world coordinate system.

Step 3: Convert from Inertial Frame [/ to Camera Frame C'
Apply RE
e This matrix rotates vectors from the inertial frame to the camera frame.
e Since the direction aligns with the matrix definition, no transpose is needed.

e The vector is now expressed in the camera frame.



Step 4: Convert from Camera Frame C to Object Frame O
Apply R
e This matrix rotates from the camera frame to the object frame.
e Again, since the direction matches, we use the matrix directly.

e The vector is finally re-expressed in the object frame.

Final Orientation Transformation

After applying all the steps in sequence, we obtain:
RG=RG-R;-(Rp)T - (RE)'
This resulting matrix allows us to:

e Transform any orientation or direction vector from the end-effector’s coordinate system into the
object’s coordinate system.

e Understand how the end-effector must be oriented to align with the object.

Visual Interpretation and Best Practices

e Always draw a diagram showing all relevant frames and the directions of known transformations.
e Confirm the direction of each transformation—whether you need a matrix or its transpose.

e Carefully follow the order of matrix multiplication, from the innermost transformation to the
outermost.

e Remember that matrix multiplication is not commutative: A -B # B - A

Why This is Important

e Understanding how to re-express vectors across frames is foundational for robot perception, control,
and manipulation.

e Tasks such as visual servoing, motion planning, and sensor fusion all depend on correct and con-
sistent frame transformations.

e This procedure ensures the robot’s motions are planned and executed with respect to the correct
environmental context.

8 What is Pose in Robotics?

In robotics, the term pose refers to the complete description of the spatial configuration of a robot or
its end-effector. Specifically, a pose combines two essential components:

e Position: Specifies the location of the point in space.

e Orientation: Specifies how the object is rotated in space relative to a reference frame.

Mathematically, we write:

Pose = Position + Orientation



Position

The position component defines the coordinates of a point in three-dimensional space (usually in meters).
It is typically represented by a column vector:

]

p:

<

z
e 1, vy, z specify the point’s location along the three Cartesian axes.
e This vector describes ”"where” the robot or its end-effector is located in space.

e Position alone is not enough; it does not describe how the object is facing or oriented.

Orientation

The orientation defines how the object is rotated with respect to some reference frame. There are multiple
mathematical representations for orientation:

e Rotation Matrix (3x3):

— Orthogonal matrix with determinant +1.
— Transforms vectors from one frame to another.

— Provides a complete, non-redundant representation.
e Euler Angles (Yaw, Pitch, Roll):

— Describes rotation as three sequential angles about coordinate axes.

— Intuitive but susceptible to gimbal lock.
e Quaternion:

— A four-dimensional representation (one scalar and three-vector components).

— Compact, avoids singularities, and is numerically stable.
e Axis-Angle:

— Represents orientation as a rotation about a fixed axis.

— Useful for interpolation and concise expressions.

Pose as a Transformation Matrix

Ultimately, pose is expressed as a single mathematical object known as a homogeneous transforma-
tion matrix, which combines both position and orientation:

T= {ofo{o ﬂ
Where:
e R is the 3 x 3 rotation matrix describing orientation.
e p is the 3 x 1 position vector.

e The last row [0 0 0 1] ensures proper matrix multiplication in homogeneous coordinates.

This transformation matrix allows for efficient computation of coordinate transformations and is
widely used in forward/inverse kinematics, trajectory planning, and computer vision.

9 What is Translation?

Translation in robotics refers to the movement of a point or object from one location to another in

space without any rotation. It purely involves shifting the position of the object while maintaining its
original orientation.



Mathematical Representation

Translation is represented by a 3-dimensional vector that describes a point’s location in space:

X
p= |yl eR?
z

e The components x,y, z represent the coordinates of the point with respect to a given reference
frame (such as the base of a robot).

e The translation vector p answers the question: ”Where is the robot or its end-effector located?”

e Units are usually in meters (m), which is standard in robotic applications.

Geometric Interpretation
e Translation can be visualized as sliding an object along a straight path in 3D space.
e The object does not rotate or change orientation—it simply changes position.
e Translation vectors are fundamental in defining relative positions between parts of a robot or

between the robot and objects in the environment.

Example

Suppose the robot’s end-effector is located 0.3 meters along the X-axis, 0.2 meters along the Y-axis, and
0.5 meters along the Z-axis from the robot’s base frame. This position is represented by:

0.3
p= (02 m
0.5

This indicates:
e z = 0.3m: Rightward from the base.
e y = 0.2m: Forward from the base.

e 2z =0.5m: Upward from the base.

Role in Robotics

e Translation is a key part of a robot’s pose, which includes both position (translation) and
orientation (rotation).

e It is used in path planning, kinematics, and control to ensure the robot can reach or avoid specific
locations.

e Translation vectors are also embedded into homogeneous transformation matrices to perform frame
transformations.

10 What is Rotation?

In robotics, rotation refers to the orientation or angular displacement of an object in 3D space. While
translation describes where an object is, rotation tells us how the object is aligned relative to a reference
frame.



Rotation Matrix Representation

The most common way to represent rotation in 3D is using a rotation matrix:

R e R3><3
A valid rotation matrix satisfies two important properties:
e Orthogonality: RTR = I, where I is the identity matrix.

e Unit Determinant: det(R) =1

These properties ensure that the rotation matrix preserves distances and angles, and that it represents
a proper rotation (not a reflection).

Elementary Rotations

In 3D space, rotation can be defined around the three principal Cartesian axes. These are known as
elementary rotations. Each corresponds to rotation about one axis, keeping the other two fixed.

Rotation about the X-axis (Roll)

1 0 0
R.(6) = |0 cosf —sind
0 sinf cos@

e This matrix rotates a vector by an angle 6 about the X-axis.
e Commonly called Roll.

o It leaves the X-component unchanged and rotates the YZ-plane.

Rotation about the Y-axis (Pitch)

cosf# 0 sinf
R,(9) = 0 1 0
—sinf 0 cos@

e This matrix rotates a vector by an angle 6 about the Y-axis.
e Known as Pitch.

e [t leaves the Y-component unchanged and rotates the XZ-plane.

Rotation about the Z-axis (Yaw)

cosf —sinf 0
R.(0) = [sinf cosf O
0 0 1

e This matrix rotates a vector by an angle 6 about the Z-axis.
e Often called Yaw.

e [t leaves the Z-component unchanged and rotates the XY-plane.



Combined Rotations

Rotations can be composed by multiplying their corresponding matrices in sequence. For example, if a
robot performs a roll, then pitch, then yaw, the combined rotation matrix is:

R =R. () Ry(0) - Ro(0)
Where:
e ¢ is the roll angle (about X-axis)
e 0 is the pitch angle (about Y-axis)

e ¢ is the yaw angle (about Z-axis)

Applications in Robotics

e Describing the orientation of robotic arms and end-effectors.
e Changing coordinate representations between frames.
e (Calculating relative angles between different parts of a robot or between robot and world.

e Essential in forward and inverse kinematics, trajectory generation, and control.

Rotation, along with translation, forms the full 6D pose of a robot or object in 3D space.

11 Homogeneous Transformation Matrix

Why Use a Homogeneous Transformation Matrix?

In robotics, a robot’s position and orientation must often be transformed from one coordinate frame to
another. While translations and rotations can be represented separately, combining them into a single
operation greatly simplifies calculations and improves efficiency.

This is accomplished using a homogeneous transformation matrix (HTM), which unifies rota-
tion and translation into one 4 x 4 matrix:

e It allows both position and orientation to be transformed simultaneously using a single matrix
multiplication.

e It enables consistent transformation of points, vectors, and coordinate frames between different

spaces (e.g., world to robot, base to end-effector).

Matrix Structure

The homogeneous transformation matrix T is structured as follows:

rii Tz 713 da

T — R d _ 21 T22 T23 dy
0" 1 T3s1 T3z T3z d
0 0 0 1

e R € R3*3 is the rotation matrix.
T . .
e d= [dw dy dz] € R3*! ig the translation vector.

e The bottom row [0 0 0 1] is a structural element that enables affine transformations using
matrix multiplication.

10



Transforming a Point Using HTM

To transform a 3D point using a homogeneous transformation matrix, we first convert the point into
homogeneous coordinates.

Let a point p be expressed in homogeneous coordinates as:

S I S

Then, the transformed point p’ in the new frame is computed by:

pP=Tp
Substituting the matrix structure:
x x
,_|R d| |yl _|R:|y|+d
P =107 1 z| z
1 1

e The result is a new point in the transformed coordinate frame.
e The rotation matrix R rotates the point.

e The translation vector d shifts the rotated point to a new position.

Interpretation and Use

e Homogeneous transformation matrices are used to represent poses (position + orientation) of links,
joints, and end-effectors in robotic systems.

e They are also used to chain multiple transformations together. For instance, to go from frame A
to frame C through B:

Tac =Tap - Tpc

e HTMs are foundational to both forward and inverse kinematics, as well as motion planning
and control.
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