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What is a Degree of Freedom (DOF)?

In robotics, a Degree of Freedom (DOF) refers to an independent type of movement a robot or a
mechanical system can perform. Think of DOF as the number of ways a robot can move. Each DOF is
either:

• A linear (translational) movement (moving along an axis), or

• A rotational (angular) movement (rotating about an axis).

Simple Analogy: Imagine your own arm. You can:

• Move your hand left or right (1 way of moving)

• Move it up or down (2nd way)

• Move it forward or backward (3rd way)

• Rotate it at the shoulder, bend at the elbow, twist the wrist, etc.

Each of these is a different degree of freedom!

Types of Movements in 3D Space

A robot or object in 3D space can move in the following six ways. These are the six basic degrees of
freedom:

Translational (Linear) Movements

These are straight-line motions along the X, Y, and Z axes.

• Translation along X-axis: Forward and backward movement.
Example: A car driving straight on a road.

• Translation along Y-axis: Left and right movement.
Example: A chess piece sliding sideways on a board.

• Translation along Z-axis: Up and down movement.
Example: An elevator going up or down.

Rotational (Angular) Movements

These are rotations about the X, Y, and Z axes.

• Rotation around X-axis (Roll): Tilting side to side.
Example: When an airplane tilts its wings while turning.

• Rotation around Y-axis (Pitch): Nodding up and down.
Example: When you nod your head to say ”yes”.

• Rotation around Z-axis (Yaw): Turning left or right.
Example: When you shake your head to say ”no”.

Diagram Tip: You can draw 3 arrows from a cube’s center to represent X, Y, and Z directions, and
show the corresponding motions with curved arrows.
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Total DOF in 3D Space

For a rigid body in three-dimensional space:

• It can move in 3 ways (X, Y, Z).

• It can rotate in 3 ways (Roll, Pitch, Yaw).

Total = 3 translations + 3 rotations = 6 DOF

Why are DOF Important in Robotics?

• A robot’s DOF tells us how flexible it is.

• More DOF means the robot can perform more complex tasks.

• To reach any point and orientation in 3D space, a robot needs at least 6 DOF.

Example: A robotic arm in a factory must:

• Reach a point (X, Y, Z) — 3 DOF

• Align its gripper properly (Roll, Pitch, Yaw) — 3 DOF

Without 6 DOF, it cannot properly grab or place objects in space.

Real-Life Examples of DOF

• 1 DOF: A sliding drawer — it only moves in or out (along one axis).

• 2 DOF: A desk lamp with a hinge and a swivel.

• 3 DOF: A robotic leg that can lift, swing forward/backward, and rotate.

2



• 6 DOF: A drone — it can move in all directions and rotate on all axes.

• 7 DOF: A human arm:

– Shoulder joint – 3 DOF (pitch, yaw, roll)

– Elbow – 1 DOF (bending)

– Wrist – 3 DOF (rotation and bending)

Introduction to Robotic Joints

In robotics, joints connect the rigid links of a robot and allow movement between them. These joints are
essential for motion and control, as they define how a robot’s parts can move. The most common joint
types used in robotic manipulators are:

• Revolute Joint (R) – allows rotational motion

• Prismatic Joint (P) – allows linear or sliding motion

Each joint contributes to the robot’s Degrees of Freedom (DOF), which define how many inde-
pendent movements a robot can perform.
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Revolute Joint: Example – Human Elbow

One of the most intuitive examples of a revolute joint is the human elbow. The elbow allows your forearm
to rotate relative to the upper arm. This motion is an angular rotation around a fixed axis.

Explanation: A revolute joint permits rotational movement between two connected links. The
amount of rotation is measured by the angle θ, known as the joint variable.

• Joint Type: Revolute (symbol: R)

• Type of Motion: Pure rotation around a fixed axis

• Joint Variable: Angle θ

• Degrees of Freedom: 1 DOF (only rotation)

• Real-world example: Human elbow, door hinge, steering wheel shaft

Visual Analogy: Imagine a door. It swings open and closed around the hinge (the joint), but it doesn’t
slide up/down or forward/backward. This is the essence of a revolute joint — rotational movement
without translation.

Prismatic Joint: Example – Hydraulic Piston

In contrast to a revolute joint, a prismatic joint allows one link to slide linearly along another. A good
example of this is a hydraulic piston — commonly found in heavy machinery — where a rod slides in
and out of a cylinder in a straight line.

Explanation: A prismatic joint enables linear (translational) motion along a single axis. It restricts
all rotational movement and allows only straight-line displacement. The amount of movement is measured
by a distance variable d.

• Joint Type: Prismatic (symbol: P)

• Type of Motion: Pure linear movement

• Joint Variable: Displacement d

• Degrees of Freedom: 1 DOF (only translation)

• Real-world example: Hydraulic piston, desk drawer, elevator actuator

Visual Analogy: Think of a desk drawer. It slides in and out along rails, maintaining the same
orientation. It does not rotate at all. This is the fundamental behavior of a prismatic joint.
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Mathematical Representation of a Prismatic Joint

In robotics, movement is often described using transformation matrices. For a prismatic joint that moves
along the X-axis by d units, the transformation matrix may look like this:

T =


1 0 0 d
0 1 0 0
0 0 1 0
0 0 0 1


Here, only the d value changes as the prismatic joint slides, which affects the position of the next link

without altering its orientation.

Comparison Table: Revolute vs Prismatic Joint

Property Revolute Joint (R) Prismatic Joint (P)
Motion Type Rotational (angular) Translational (linear)
Joint Variable θ (angle) d (distance)
Degrees of Freedom 1 DOF (rotation) 1 DOF (translation)
Allowed Motion Rotation around a fixed axis Linear motion along a fixed axis
Restricts Translation Rotation
Symbol R P

Real-World Examples Elbow, door hinge, robot arm
joint

Hydraulic piston, drawer slide,
3D printer Z-axis

Gruebler-Kutzbach Criterion for DOF Calculation

To determine the number of independent movements (degrees of freedom) of a mechanism, theGruebler-
Kutzbach criterion is widely used. This formula is applicable to both spatial mechanisms (operating
in 3D space) and planar mechanisms (constrained to 2D motion).

General Formula (Spatial Mechanisms)

For spatial mechanisms, which exist in 3D and can potentially have 6 DOF (3 translations + 3 rotations),
the formula is:

DOF = 6(N − 1− J) +

J∑
j=1

fj

Where:

• N = Total number of links, including the base

• J = Number of joints in the mechanism

• fj = Degrees of freedom provided by the jth joint (usually 1 for revolute or prismatic joints)

Formula for Planar Mechanisms

For planar mechanisms, which operate only in a 2D plane (typically with 3 DOF: 2 translations + 1
rotation), the formula is modified by replacing 6 with 3:

DOF = 3(N − 1− J) +

J∑
j=1

fj
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Example: 2-Link Planar Robot Arm

Let us consider a simple planar robot with 2 links connected by revolute joints.

• Total number of links N = 3 (2 links + 1 base)

• Total joints J = 2

• Each joint is revolute, so fj = 1 for each

Using the planar DOF formula:

DOF = 3(3− 1− 2) + (1 + 1) = 3(0) + 2 = 2

So, the robot has 2 degrees of freedom, allowing it to position its end-effector anywhere in the plane (but
not arbitrarily orient it).

Visualizing DOF with RoboAnalyzer

To help learners intuitively understand degrees of freedom and how they affect robot motion, the Robo-
Analyzer software is an excellent educational tool.

Key Features:

• Create and simulate serial robot manipulators in 3D

• Add revolute or prismatic joints interactively

• Modify joint variables and observe the effect on the end-effector

• View transformation matrices and Denavit-Hartenberg parameters automatically

Website: https://roboanalyzer.com
Using RoboAnalyzer, students can visually confirm how changing joint configurations changes the robot’s
pose and how the number of DOF influences the robot’s flexibility and reach.

Forward Kinematics and Inverse Kinematics

Kinematics in robotics refers to the study of motion without considering the forces that cause it. It deals
with the geometry of motion — positions, velocities, and accelerations of robot parts. There are two
primary types of kinematics:

• Forward Kinematics (FK) – computing the position of the end-effector from given joint param-
eters.

• Inverse Kinematics (IK) – computing the joint parameters required to achieve a desired end-
effector position.

Forward Kinematics (FK)

Forward Kinematics is the process of calculating the position and orientation of a robot’s end-effector
when the joint variables (like joint angles or linear displacements) are known.

What is Given?

• The type and length of each link in the robot

• The current angle of each revolute joint or displacement of each prismatic joint

What is Computed?

• The precise position and orientation of the end-effector, typically in Cartesian coordinates (e.g., x,
y, z)
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Applications

• Robot simulation and animation

• Visualization of robot movement

• Predicting end-effector path given joint movements

Advantages

• Deterministic: there is only one output for a given input

• Easy to compute using simple matrix multiplication

Analogy

Think of a robotic arm like your own arm. If you bend your elbow and wrist at specific angles, your
hand will end up in a specific position. Forward kinematics helps you compute exactly where that hand
will be.

Inverse Kinematics (IK)

Inverse Kinematics is the reverse process — determining the joint angles or displacements required to
place the end-effector at a specific position and orientation.

What is Given?

• The desired position (and possibly orientation) of the end-effector

• The type and length of each link

What is Computed?

• The joint parameters (angles or displacements) that will place the end-effector in the desired
position

Applications

• Motion planning and trajectory design

• Grasping and manipulation in robotic arms

• Industrial tasks requiring precision movement

Challenges

• Non-linear equations must be solved

• Multiple (or no) solutions possible

• May require numerical methods or iterative solvers

Analogy

Imagine reaching out your hand to grab a cup on a table. You know the desired location of your hand
(the cup’s position), but your brain must calculate how much to rotate your shoulder, elbow, and wrist
to reach that point — this is inverse kinematics.
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Comparison Table

Aspect Forward Kinematics (FK) Inverse Kinematics (IK)
Input Joint parameters (angles/displace-

ments)
Desired end-effector position and
orientation

Output End-effector position and orienta-
tion

Required joint parameters

Nature Deterministic, straightforward Often non-linear, multiple solutions
Computation Simple matrix operations (e.g., us-

ing DH parameters)
May require iterative numerical
methods

Applications Simulation, animation, visualization Motion planning, real-time control,
grasping

Difficulty Level Easier More complex

What is Forward Kinematics?

Forward Kinematics (commonly abbreviated as FK) is a fundamental concept in robotics. It refers to
the mathematical process used to determine the position and orientation of a robot’s end-effector (the
tool or hand at the end of the robot arm) based on the known values of its joint parameters.

In simpler terms, if we already know how each joint in a robot is configured — that is, the angles of
the rotating joints (called revolute joints) or the distances in sliding joints (called prismatic joints) —
then forward kinematics tells us exactly where the end of the robot arm will be located in space, and
what its orientation (direction it is pointing) will be.

Why Forward Kinematics Matters

Forward kinematics plays a vital role in many areas of robotics:

• Simulation and Animation: When simulating a robot in software, we often input joint angles
to see how the robot moves. FK is what computes how the motion of each joint affects the position
of the tool.

• Control and Planning: Before we can plan paths or avoid obstacles, we must understand where
the robot is and how its joints influence that. FK provides that understanding.

• Prerequisite for Inverse Kinematics: Inverse kinematics (IK) involves figuring out which joint
values will produce a desired position. But solving IK often requires solving FK many times as
part of the process.

• Kinematic Chains: FK is the basis for modeling how multiple links and joints form a kinematic
chain and how movement at one joint propagates to the entire arm.

Inputs to Forward Kinematics

To compute the position and orientation of the end-effector, forward kinematics requires the following
inputs:

• Joint Variables: These define the current configuration of each joint. For revolute joints, the
variable is the rotation angle (typically in radians or degrees). For prismatic joints, the variable is
the linear displacement (usually in meters or millimeters).

• Link Parameters: These are geometric constants that describe the physical structure of the
robot. Common parameters include:

– Length of each link

– Offset between joints

– Twist angles between links

These parameters are often defined using the Denavit–Hartenberg (DH) convention.
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Outputs of Forward Kinematics

The output of FK is the pose of the end-effector relative to a fixed coordinate system, often called the
world frame or base frame. This pose consists of:

• Position: A 3D point (x, y, z) describing the location of the end-effector.

• Orientation: The direction the end-effector is pointing, which can be represented using rotation
matrices, Euler angles, or quaternions.

Together, position and orientation describe the full pose of the end-effector in space.

Deterministic Nature of FK

An important property of forward kinematics is that it is deterministic. That means, for a given set of
joint values and fixed robot geometry, the resulting end-effector pose is unique. There is only one correct
answer. This makes FK relatively straightforward to compute and extremely reliable for simulation and
analysis.

Why Use Homogeneous Transformation Matrices?

In robotics, we frequently deal with both rotations and translations. Managing them separately can
be cumbersome, especially when trying to combine multiple movements. Homogeneous transformation
matrices solve this problem by allowing both rotation and translation to be represented within a single
4×4 matrix.

Purpose and Benefits

Homogeneous matrices are used to:

• Represent combined transformations: Each transformation matrix encodes both how a link
is rotated and how it is translated (shifted) relative to the previous link.

• Chain multiple movements: In robots with multiple joints, each joint transforms the frame
attached to it. Homogeneous matrices can be multiplied together to form a single matrix that
represents the cumulative transformation from base to end-effector.

• Work in 3D space: These matrices simplify the math required to deal with 3D geometry, which
includes both angular and linear motion.

Structure of a Homogeneous Transformation Matrix

A standard 4×4 homogeneous transformation matrix T is written as:

T =

[
R3×3 d3×1

01×3 1

]
Where:

• R3×3 is a rotation matrix that defines how the coordinate frame is rotated.

• d3×1 is a translation vector that defines how the coordinate frame is shifted.

• The bottom row [0 0 0 1] is used for matrix algebra and does not affect the geometry.

Why It Works

The beauty of this matrix is that when you multiply it with a point written in homogeneous coordinates
(i.e., a 4×1 column vector like [x y z 1]T ), it applies both the rotation and the translation in a single
operation. This makes transformation calculations efficient and easy to implement in code.
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Usage in DH Convention

The Denavit–Hartenberg (DH) convention is a standardized method for modeling robotic arms. Each
joint and link is described using four parameters, and these are converted into a homogeneous transfor-
mation matrix. These matrices are then multiplied sequentially from base to end-effector to compute
the full FK.

Introduction to the Denavit–Hartenberg Method

In robotics, understanding how different parts of a robot arm are connected and move relative to each
other is crucial. The Denavit–Hartenberg (DH) method is a standard technique that helps us describe
the geometry of robot arms in a simple, systematic way. This method allows us to find the exact position
and orientation of the robot’s end-effector (such as a hand or tool) based on the angles and positions of
its joints.

The main idea is to represent the robot’s structure using coordinate frames attached to each link and
then describe how to move from one frame to the next using a small set of parameters. This reduces the
complexity of analyzing robot motion and makes the problem much easier to solve mathematically.

Why do we need the DH method?

• Robots can have many joints and links, making manual calculations complicated.

• We need a standardized, repeatable process for assigning coordinate systems to parts of the robot.

• The DH method simplifies calculations by using only four parameters per joint, regardless of the
robot’s complexity.

• It enables efficient computation of forward kinematics — predicting the position of the end-effector
from given joint angles.

Step 1: Assigning Coordinate Frames

The first and perhaps most important step in the DH method is to attach a coordinate frame to each
link of the robot. These frames are essential to describe how one link is positioned and oriented relative
to the previous one.

The coordinate frames consist of three perpendicular axes — labeled xi, yi, zi — that form a right-
handed system for each link i.

Rules for Assigning Frames

Assigning these frames correctly is crucial. The DH method defines a clear set of rules:

1. Assign the zi axis: For the ith joint, the zi axis is chosen to lie along the axis of motion of that
joint.

• For revolute joints, which rotate, zi points along the axis about which the joint rotates.

• For prismatic joints, which slide, zi points along the direction in which the joint slides.

This axis essentially describes the ”direction” of the joint’s movement.

2. Assign the xi axis: The xi axis is defined to be perpendicular to both the current joint axis zi
and the previous joint axis zi−1.

• More specifically, xi points along the common normal between zi−1 and zi. The common
normal is the shortest line perpendicular to both axes.

• If zi−1 and zi intersect, xi is chosen perpendicular to both, passing through their intersection.

3. Origin of frame i: The origin is placed at the intersection of the zi axis and the xi axis. This
intersection is the point where the coordinate frame is attached to the link.
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4. Assign the yi axis: Finally, yi is chosen to complete the right-handed coordinate system:

y⃗i = z⃗i × x⃗i

which means yi is the vector product of zi and xi.

These frames provide a consistent way to describe the position and orientation of each link relative to
its predecessor.

Step 2: Understanding DH Parameters

Once the coordinate frames are assigned, the next step is to describe how to get from one frame i− 1 to
the next frame i. The DH method does this using four parameters:

• θi — The angle of rotation about the zi−1 axis needed to align xi−1 with xi.

• di — The offset distance along the zi−1 axis from the origin of frame i− 1 to the point where the
common normal intersects zi−1.

• ai — The length of the common normal, i.e., the distance along the xi axis between the two joint
axes zi−1 and zi. It represents the length of the link.

• αi — The angle between the axes zi−1 and zi, measured about the xi axis. It represents the twist
of the link.

Intuition behind these parameters:

• θi tells us how much the link rotates about the joint axis.

• di tells us how far the link shifts along the joint axis.

• ai is basically the physical length of the link.

• αi captures how the link twists relative to the previous link.

Together, these parameters fully describe the relative position and orientation between two adjacent
links.

Step 3: Constructing the DH Transformation Matrix

We want to represent the change in position and orientation from frame i− 1 to frame i in a single 4× 4
matrix called the homogeneous transformation matrix T i−1

i .
This matrix combines rotations and translations and is crucial for computing forward kinematics.

The transformation from frame i− 1 to i can be decomposed into four simpler steps:

1. Rotate about zi−1 by θi:

Rz(θi) =


cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1


This rotation aligns the xi−1 axis with xi.

2. Translate along zi−1 by di:

Tz(di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1


This shifts the origin along the joint axis.
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3. Translate along xi by ai:

Tx(ai) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1


This moves along the link length.

4. Rotate about xi by αi:

Rx(αi) =


1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1


This accounts for the twist between links.

The full transformation is the product of these four matrices in order:

T i−1
i = Rz(θi) · Tz(di) · Tx(ai) ·Rx(αi)

This matrix represents both rotation and translation and fully encodes the spatial relationship be-
tween two consecutive links.

Step 4: Final Combined Transformation Matrix

Multiplying out the above four matrices, the final Denavit–Hartenberg transformation matrix from frame
i− 1 to i is:

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1


Explanation of the entries:

• The 3× 3 upper-left submatrix represents the rotation from frame i− 1 to frame i.

• The first three entries of the last column represent the translation vector (the position of frame i
origin relative to frame i− 1).

• The last row [0 0 0 1] is necessary to use homogeneous coordinates for combined rotation and
translation.

Step 5: Using DH Matrices for Forward Kinematics

To find the pose of the robot’s end-effector relative to the base frame (frame 0), multiply the DH
transformation matrices of all the links sequentially:

T 0
n = T 0

1 · T 1
2 · T 2

3 · . . . · Tn−1
n

Here:

• T 0
n is the overall transformation matrix from the base frame to the end-effector frame.

• n is the total number of joints or links.

This matrix contains:

• The orientation of the end-effector relative to the base.

• The position of the end-effector relative to the base.
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Summary and Intuition Recap

• The DH method standardizes the description of robot arms using coordinate frames attached to
each joint.

• Only four parameters per joint (θi, di, ai, αi) are needed to describe all spatial relationships.

• The transformation matrix T i−1
i encodes how to move from one link’s coordinate frame to the next.

• Multiplying all these matrices gives the position and orientation of the robot’s tool or hand in
space.

This systematic approach turns a complex mechanical problem into a series of simple matrix multiplica-
tions, allowing robots to be controlled precisely in three-dimensional space.

Key Takeaways

• Forward Kinematics calculates the end-effector position and orientation from known joint angles
or displacements and is straightforward to compute.

• Inverse Kinematics finds the joint parameters needed to place the end-effector at a desired position,
and is generally more complex with possible multiple solutions.

• Homogeneous transformation matrices combine rotation and translation into a single structure,
allowing easy chaining of movements between robot links.

• The Denavit–Hartenberg method provides a standard way to assign coordinate frames to each
robot link and describes spatial relationships using only four parameters per joint.

• DH frames are assigned based on joint axes, common normals, and right-handed coordinate systems
to ensure consistent and systematic modeling.

• Each joint is described by four DH parameters that capture the relative rotation, translation, link
length, and twist between links.

• Transformation matrices derived from DH parameters represent how to move from one link’s frame
to the next, combining rotations and translations.

• Multiplying these matrices from the base to the end-effector gives the complete pose of the robot’s
tool in space.

• Degrees of Freedom (DOF) represent the number of independent motions a robot has, including
translations and rotations; a minimum of six DOF is required for full 3D control.

• Understanding and calculating DOF, along with using kinematics and DH method, are essential
for designing, simulating, and controlling robot arms effectively.
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