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Session 4 Recap & Reflect

Motion

• Motion is fundamental to robotic behavior — it enables sensing, interacting, and acting.

• We studied two types of motion:

• Linear motion: Movement along a straight line.
• Angular motion: Rotation about a fixed axis.

• Most robots involve both types — e.g., a wheeled robot moves forward (linear) while its
wheels rotate (angular).

• We covered:

• Position, displacement, velocity, acceleration (linear and angular)
• Rigid body motion
• Moment of inertia
• Tangential and radial motion components
• Linking angular motion to linear effects
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Session 4: Recap & Reflect (contd.)

Linear vs Angular Motion

Quantity Linear Motion Angular Motion

Position x : position along a line θ: angular position

Displacement ∆x = xf − xi ∆θ = θf − θi

Velocity v = dx
dt ω = dθ

dt

Acceleration a = dv
dt α = dω

dt

Inertia Mass m Moment of inertia I

Force Equivalent Force F = ma — (torque not yet intro-
duced)

Linear and angular motions mirror each other — this parallel helps transfer intuition in robotics.
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Session 4 : Recap & Reflect (contd.)

Linear vs Tangential Velocity

Aspect Linear Velocity Tangential Velocity

Meaning Rate of change of position
along a line

Linear speed of a point on a
rotating object

Applies to Translating (non-rotating)
bodies

Rotating bodies (rigid)

Formula v = dx
dt v = rω

Direction Along the path of motion Tangent to the circular path

Variation across body Same for all points (rigid
translation)

Varies with radius r from axis

Units m/s m/s

Tangential velocity is a specific case of linear velocity for points on a rotating object.
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Session 4 : Recap & Reflect (contd.)

Acceleration in Circular Motion

• Tangential Acceleration at = rα

• Due to change in angular speed (α ̸= 0).
• Direction: tangent to circular path.

• Centripetal (Radial) Acceleration ar = ω2r

• Due to change in direction during rotation.
• Direction: toward center of rotation.

Total Acceleration:

a =
√
a2t + a2r

Both components act simultaneously in circular motion unless ω = 0.
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Session 4 : Recap & Reflect (contd.)

Tangential vs Centripetal Acceleration

Aspect Tangential Acceleration at Centripetal Acceleration ar

Meaning Change in speed of a rotating
point

Change in direction of velocity
during circular motion

Formula at = rα ar =
v2

r = ω2r

Direction Tangent to the circular path Always toward the center of ro-
tation

Exists when Angular velocity ω is changing
(i.e., α ̸= 0)

Any time an object is moving in
a circle, even at constant speed

Zero when α = 0 (constant speed rotation) ω = 0 (no rotation)

Both accelerations are experienced simultaneously in circular motion when speed and direction are
changing.
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Session 4 : Recap & Reflect (contd.)

What is Moment of Inertia?

• It measures an object’s resistance to angular acceleration.
• It depends on:

• The object’s mass.
• How far the mass is distributed from the axis of rotation.

• Unit: kg ·m2

Formula:

• For a point mass: I = mr2

• For multiple point masses: I =
∑

mi r
2
i

• For continuous bodies: I =
∫
r2 dm

Greater the distance of mass from the axis, larger the moment of inertia.
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Session 4 Recap Quiz
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Recap Quiz

Q1. A point on the rim of a rotating wheel moves with constant angular velocity
ω. Which of the following is true about its acceleration?

1. a = 0, α = 0

2. a ̸= 0, α = 0

3. a = 0, α ̸= 0

4. a ̸= 0, α ̸= 0

Q2. What is the direction of the net acceleration of a point on a rotating disc
when both angular speed and angular acceleration are non-zero?

1. Radial (inward)

2. Tangential

3. Perpendicular to the plane of rotation

4. At an angle between radial and tangential directions
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Recap Quiz (contd.)

Q3. A robot arm lifts a payload and stretches forward to place it on a shelf. The
mass is small, but the shelf is far. Why is the moment of inertia highest when the
arm is fully extended? Because

1. mass increases as the arm extends

2. angular velocity is higher at full reach

3. mass is farther from the rotation axis

4. tangential velocity is zero at the tip

Q4. A robot’s sensor rotates back and forth for scanning. It starts from rest,
accelerates to a fixed angular speed, and then decelerates to stop after each scan
cycle. When is tangential acceleration non-zero?

1. Only during the mid-scan when speed is constant

2. Only during start and stop

3. Throughout the motion

4. Never
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Recap Quiz (contd.)

Q5. The tip of a robot arm is moving along a circular arc at a constant angular
velocity. At some point, the gripper releases an object while rotating. What kind
of path will the object follow immediately after release? It will

1. fall straight down

2. continue along the circular path

3. move tangentially to the arc at the point of release

4. spiral outward from the arm

Q6. A self-driving car is moving at a constant speed while turning around a wide
curve. The onboard sensors detect acceleration.What kind of acceleration is the
car experiencing?

1. Tangential acceleration

2. No acceleration

3. Centripetal acceleration

4. Linear forward acceleration
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Recap Quiz (contd.)

Q7. A humanoid swings its arms while walking. The arms swing like pendulums
from the shoulder joint. What happens to tangential velocity of the hand?

1. It stays constant throughout the motion

2. It increases when angular velocity increases

3. It decreases with distance from the shoulder

4. It is unrelated to angular velocity

Q8. A mobile robot carries a 5 kg payload. Initially, the payload is mounted at
the center and later moved to the back edge of the robot. What happens to its
moment of inertia when turning?

1. It increases

2. It decreases

3. It stays the same

4. The robot moves faster
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Answer Key with Explanations

• Q1: B — Centripetal acceleration exists due to direction change, but ω is constant so α = 0.

• Q2: D — Both tangential (at) and radial (ar ) acceleration are present. The net acceleration
is the vector sum — angled between them.

• Q3: C — Moment of inertia I =
∑

mr2 increases with distance. Fully extended arm
increases r , hence higher inertia.

• Q4: B — Tangential acceleration exists only when angular velocity changes — i.e., at start
and stop phases.

• Q5: C — Once released, the object moves in the direction of its tangential velocity —
traight line tangent to the circle at the release point.

• Q6: C — Even if speed is constant, turning changes direction, causing inward (centripetal)
acceleration.

• Q7: B — As the robot’s arm swings faster, angular speed increases. Since, v = rω, the
tangential speed of the hand increases too.

• Q8: A — Moment of inertia increases when mass is farther from the axis. Shifting the
payload from center to edge increases radius r , thus increasing inertia I = mr2.
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Part A- Torque
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Torque and Rotational Motion: The Rotational Equivalent of Force

What is Torque?

Just as force changes an object’s translational motion, torque changes an object’s
rotational motion about a pivot or axis.

Torque is defined as:
τ⃗ = r⃗ × F⃗ ⇒ τ = rF sin θ

• τ⃗ is the torque vector (in Nm),

• r⃗ is the lever arm — the position vector from the
pivot point (O) to the point where the force is
applied.,

• F⃗ is the applied force,

• θ is the angle between r⃗ and F⃗ .

Direction of Torque: Use the Right-Hand Rule — curl your fingers from r⃗ to F⃗ ; your
thumb gives the direction of τ⃗ .
Torque is a vector and points along the axis of rotation. 17 / 35



Torque and Rotational Motion (contd.)

Everyday Example – Merry-Go-Round

• Torque increases when force is applied farther from
the pivot.

• Larger lever arm = more torque = faster rotation.

Another Way of Expressing Torque

τ = r · F⊥ = r · Ftan

• F⊥ or Ftan : Component of force perpendicular to
the lever arm.

• Tangential force Ftan causes rotation.

• Radial force Frad passes through pivot → no
torque.

• Angle ϕ is between r⃗ and F⃗ .
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Types of Torque: Static vs Dynamic

Static Torque

A twisting force applied to an object that does not cause it to rotate. It arises when the
object is constrained or held in place. Even though no motion occurs, muscles or
mechanisms must still exert force to maintain the torque.

Examples:
• Pushing a closed door that doesn’t move.
• Holding a wrench still while tightening a bolt.

Dynamic Torque

A twisting force that results in rotation and produces angular acceleration. It causes
motion and is commonly associated with engines, motors, or rotating mechanical systems.

Examples:
• A car engine turning the wheels.
• A motor shaft spinning.
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Rotational Dynamics – Newton’s Second Law

What is the rotational counterpart of Newton’s Second Law?
• Start with the translational form:

∑
F⃗ = ma⃗

• Consider a point mass m rotating at radius r ,
with a tangential force F⃗

• From linear dynamics: F = ma

• For circular motion: a = rα

• Substituting: F = mrα

• Multiply both sides by r : rF = mr2α
• Recognize:

• Torque: τ = rF
• Moment of inertia: I = mr2

• Therefore: τ = Iα

For a rigid body:
∑

τi = Iα
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Torque Analysis – Balanced Cases

Example 1: Equal Masses, Equal Distances

• 5 kg at +2m (right), 5 kg at −2m (left)

• Left: τ = −2 · (5 · 9.8) = −98Nm

• Right: τ = +2 · (5 · 9.8) = +98Nm

• Net Torque: 0 → Perfectly Balanced

Example 2: Unequal Masses, Adjusted Dis-
tance

• 10 kg at +1m, 5 kg at −2m

• Left: τ = −2 · (5 · 9.8) = −98Nm

• Right: τ = +1 · (10 · 9.8) = +98Nm

• Net Torque: 0 → Balanced

Simulation source:
https://phet.colorado.edu/sims/html/balancing-act/latest/balancing-act_en.htmlPhET Balancing Act Simulation
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Torque Analysis – Unbalanced Case

Example 3: Same Masses, Unequal Distances

• Place a 5 kg mass at +2m (right side)

• Place another 5 kg mass at −0.5m (left side)

Torque Calculation:

• Left: τ = −0.5 · (5 · 9.8) = −24.5Nm

• Right: τ = +2 · (5 · 9.8) = +98Nm

• Net Torque: +73.5Nm

Conclusion: The beam rotates clockwise due to
stronger torque on the right.
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Multi-Object See-Saw Torque Analysis

Left Side (Negative Positions):

• 30 kg at −1.5m:
τ = −1.5 · (30 · 9.8) = −441Nm

• 20 kg at −1.75m:
τ = −1.75 · (20 · 9.8) = −343Nm

Right Side (Positive Positions):

• 60 kg at +0.75m:
τ = +0.75 · (60 · 9.8) = +441Nm

• 20 kg at +1.75m:
τ = +1.75 · (20 · 9.8) = +343Nm

Net Torque:
−441− 343 + 441 + 343 = 0Nm

Conclusion: The system is in rotational equilibrium.
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Torque Calculation – Revolute Joint in a Robot Arm

Suppose you have a robot with a revolute joint and an arm of 0.5 meters. The robot is
lifting a 2 kg load at a joint angle of 30°. What is the torque required for the joint?

Step 1: Compute Load Weight

F = m · g = 2 · 9.81 = 19.62N

Step 2: Use Torque Formula

τ = r · F · sin(θ)

τ = 0.5 · 19.62 · sin(30◦) = 0.5 · 19.62 · 0.5

τ = 4.905 Nm

The required torque is 4.905 Newton-meters.

A robot arm lifting a load at angle
θ = 30◦
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Torque in Action – Simulations & Real-World Examples

PhET Simulation: Balancing Act
• Try it yourself: https://phet.colorado.edu/en/simulation/balancing-act
• Observe torque on each side and net torque in real-time.
• Practice balancing by adjusting weight and arm length.
• Excellent for reinforcing concepts like lever arms and rotational equilibrium.

Everyday Examples of Torque
• Watch here: https://www.youtube.com/watch?v=-yXPReR-31E
• Demonstrates torque and types of torque using familiar objects: wrenches, see-saws,
bicycles.

• Builds real-world intuition around the torque formula.

Torque in Boston Dynamics’ Spot Robot
• Watch here: https://www.youtube.com/watch?v=tfWbE1eCZk
• Shows how Spot uses joint torques for walking and balancing.
• Highlights precise motor control and torque feedback in real-time robotic motion.
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Part B- Equilibrium
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Why Equilibrium is Important in Robotics

• Foundation for Stability and Safety:
Robots must maintain balance while handling loads or operating on uneven terrain.
Example: A humanoid robot lifting a box must adjust posture to avoid falling.

• Enables Accurate Control:
Control algorithms (e.g., PID) rely on initial balance to execute precise movements.
Example: A manipulator arm holding a tool steady before welding.

• Necessary for Grasping and Holding Objects:
Grippers must counteract forces and torques to prevent slipping.

• Crucial for Walking and Dynamic Motion:
Walking robots use real-time force/torque balance to stay upright.
Example: Spot robot from Boston Dynamics adjusting to terrain.

• Avoiding Failures:
Poor equilibrium causes overloads, instability, and mechanical failure.

27 / 35



Understanding Mechanical Equilibrium

What is Equilibrium?

• A state of balance where opposing forces or influences cancel out.

• Can be at rest or in steady motion — no net force or torque.

• Includes both static and dynamic conditions.

Types of Mechanical Equilibrium:

Static Equilibrium

• Object is at rest:
∑

F⃗ = 0,
∑

τ = 0

• No linear or angular acceleration
• Examples:

• Book on a table
• Person standing still
• Balanced seesaw
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Types of Mechanical Equilibrium (contd.)

Dynamic Equilibrium

• Object is in motion with constant
velocity:

∑
F⃗ = 0,

∑
τ = 0

• No net acceleration or change in angular
velocity

• Examples:
• Car at constant velocity
• Skydiver at terminal speed
• Pendulum at constant amplitude

A

system with zero net force is not necessarily in static equilibrium
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Condition 2: Net Torque Must Be Zero

• Example: Hockey Stick on Ice
• In Figure A, two equal and opposite forces are

applied at the same point on the stick.
• ⇒ Net force = 0 & Net torque = 0 ⇒ No

motion — Static equilibrium achieved.

• In Figure B, same forces applied at different
points.

• ⇒ Net force = 0 but Net torque ̸= 0 ⇒ Stick
rotates — Not in equilibrium.

• Conclusion:
• For complete equilibrium, both conditions must

be satisfied:
• ∑

F⃗ = 0 (No net force)
• ∑

τ = 0 (No net torque)

• Torque depends on magnitude, direction, and
point of application.
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Stability of Equilibrium – Stable vs Unstable

Stability: Describes how the system behaves when slightly disturbed.

Types of Stability

• Stable Equilibrium:

• Restoring torque brings system back to
equilibrium.

• Example: A slight counterclockwise tilt causes a
restoring clockwise torque due to the pencil’s
weight, bringing it back to equilibrium.

• Unstable Equilibrium:
• A system in unstable equilibrium accelerates

away from its equilibrium position.
• Example: If the pencil is displaced too far, the

torque caused by its weight changes to
counterclockwise and causes the displacement
to increase.
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Stability of Equilibrium – Neutral Case

Neutral Equilibrium

• System stays in new position after displacement.

• No net force or torque to return or move it further.

• Equilibrium is independent of position.

• Example: Ball resting on a flat horizontal surface.

Source:
https://uta.pressbooks.pub/oert-mpsfundamentals/chapter/chapter-6-basic-dynamics-and-static-equilibrium/

https://www.openassembly.com/document/6d370d32-99fc-4dc0-b06c-210f400afa31?context=
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What is a Free-Body Diagram (FBD)?

• Definition:
• A Free-Body Diagram (FBD) is a simplified sketch that shows all the external

forces and torques acting on a single object.
• It helps isolate the object from its environment, focusing only on what influences its

motion or balance.
• Think of it as: “Zooming in on one object to analyze what’s pushing or pulling on it.”

• Why Use FBDs?
• Clarifies complex mechanical situations by simplifying them.
• Helps apply Newton’s Laws (

∑
F⃗ = 0,

∑
τ = 0, or

∑
F⃗ = ma⃗).

• Essential for solving equilibrium and dynamics problems.
• Helps identify incorrect assumptions or missing forces.
• Bridges the gap between physical intuition and mathematical formulation.
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FBDs in Robotics

• Why FBDs Matter in Robotics:
• FBDs help calculate the torque required at joints to

lift, hold, or move objects.
• They aid in identifying external forces such as

gravity, payloads, or ground reaction forces.

• Without FBDs:
• Force and torque calculations become guesswork.
• Increased risk of incorrect actuator sizing or overload.
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FBDs in Robotics

• Applications of FBDs:
• Crucial for analyzing robot stability (e.g.,

humanoid balance or quadrupeds).
• Assists in determining structural load

paths and stress points.
• Supports energy-efficient design by

minimizing unnecessary force exertion.

• Consequences of Skipping FBDs:
• Potential mechanical failure or unstable

gait/movement.
• Lower accuracy in motion planning and

force control.
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