Session 5: Torque and Statics Part A- Torque and rotational motion Part B- Equilibrium Part C: Free body diagrams

Dr. Arshiya Sood

June 07, 2025

1. Session 4 Recap

2. Torque

- 2.1 Torque and Rotational Motion?
- 2.2 Types of Torque: Static vs Dynamic
- 2.3 Rotational Dynamics Newton's Second Law
- 2.4 Torque Analysis Examples
- 2.5 Torque in action : video/demo

3. Equilibrium

- 3.1 Why Equilibrium is Important in Robotics
- 3.2 Mechanical Equilibrium and its types
- 3.3 Stability of Equilibrium

4. Free-body Diagram

- 4.1 What is a Free-Body Diagram (FBD)?
- 4.2 Why FBDs in Robotics

Session 4 Recap & Reflect: What Did We Learn?

Motion

- Motion is fundamental to robotic behavior it enables sensing, interacting, and acting.
- We studied two types of motion:
 - Linear motion: Movement along a straight line.
 - Angular motion: Rotation about a fixed axis.
- Most robots involve both types e.g., a wheeled robot moves forward (linear) while its wheels rotate (angular).
- We covered:
 - Position, displacement, velocity, acceleration (linear and angular)
 - Rigid body motion
 - Moment of inertia
 - Tangential and radial motion components
 - Linking angular motion to linear effects

Linear vs Angular Motion

Quantity	Linear Motion	Angular Motion
Position	x: position along a line	heta: angular position
Displacement	$\Delta x = x_f - x_i$	$\Delta heta = heta_f - heta_i$
Velocity	$v = \frac{dx}{dt}$	$\omega = rac{d heta}{dt}$
Acceleration	$a = rac{dv}{dt}$	$\alpha = \frac{d\omega}{dt}$
Inertia	Mass <i>m</i>	Moment of inertia I
Force Equivalent	Force $F = ma$	— (torque not yet intro- duced)

Linear and angular motions mirror each other — this parallel helps transfer intuition in robotics.

Linear vs Tangential Velocity

Aspect	Linear Velocity	Tangential Velocity
Meaning	Rate of change of position along a line	Linear speed of a point on a rotating object
Applies to	Translating (non-rotating) bodies	Rotating bodies (rigid)
Formula	$v = \frac{dx}{dt}$	$v = r\omega$
Direction	Along the path of motion	Tangent to the circular path
Variation across body	Same for all points (rigid translation)	Varies with radius <i>r</i> from axis
Units	m/s	m/s

Tangential velocity is a specific case of linear velocity for points on a rotating object.

Session 4 : Recap & Reflect (contd.)

Acceleration in Circular Motion

- Tangential Acceleration $a_t = r\alpha$
 - Due to change in angular speed ($\alpha \neq 0$).
 - Direction: tangent to circular path.
- Centripetal (Radial) Acceleration $a_r = \omega^2 r$
 - Due to change in direction during rotation.
 - Direction: toward center of rotation.

Total Acceleration:

$$a = \sqrt{a_t^2 + a_r^2}$$

Both components act simultaneously in circular motion unless $\omega = 0$.

Tangential vs Centripetal Acceleration

Aspect	Tangential Acceleration a_t	Centripetal Acceleration a _r
Meaning	Change in speed of a rotating point	Change in direction of velocity during circular motion
Formula	$a_t = r \alpha$	$a_r = rac{v^2}{r} = \omega^2 r$
Direction	Tangent to the circular path	Always toward the center of ro- tation
Exists when	Angular velocity ω is changing (i.e., $lpha eq 0$)	Any time an object is moving in a circle, even at constant speed
Zero when	lpha= 0 (constant speed rotation)	$\omega=$ 0 (no rotation)

Both accelerations are experienced simultaneously in circular motion when speed and direction are changing.

What is Moment of Inertia?

- It measures an object's resistance to angular acceleration.
- It depends on:
 - The object's mass.
 - How far the mass is distributed from the axis of rotation.
- Unit: $kg \cdot m^2$

Formula:

- For a point mass: $I = mr^2$
- For multiple point masses: $I = \sum m_i r_i^2$
- For continuous bodies: $I = \int r^2 dm$

Greater the distance of mass from the axis, larger the moment of inertia.

Session 4 Recap Quiz

Recap Quiz

Q1. A point on the rim of a rotating wheel moves with constant angular velocity ω . Which of the following is true about its acceleration?

- 1. $a = 0, \alpha = 0$ 2. $a \neq 0, \alpha = 0$ 3. $a = 0, \alpha \neq 0$
- 4. $a \neq 0, \ \alpha \neq 0$

Q2. What is the direction of the net acceleration of a point on a rotating disc when both angular speed and angular acceleration are non-zero?

- 1. Radial (inward)
- 2. Tangential
- 3. Perpendicular to the plane of rotation
- 4. At an angle between radial and tangential directions

Recap Quiz (contd.)

Q3. A robot arm lifts a payload and stretches forward to place it on a shelf. The mass is small, but the shelf is far. Why is the moment of inertia highest when the arm is fully extended? Because

- 1. mass increases as the arm extends
- 2. angular velocity is higher at full reach
- 3. mass is farther from the rotation axis
- 4. tangential velocity is zero at the tip

Q4. A robot's sensor rotates back and forth for scanning. It starts from rest, accelerates to a fixed angular speed, and then decelerates to stop after each scan cycle. When is tangential acceleration non-zero?

- 1. Only during the mid-scan when speed is constant
- 2. Only during start and stop
- 3. Throughout the motion
- 4. Never

Recap Quiz (contd.)

Q5. The tip of a robot arm is moving along a circular arc at a constant angular velocity. At some point, the gripper releases an object while rotating. What kind of path will the object follow immediately after release? It will

- 1. fall straight down
- 2. continue along the circular path
- 3. move tangentially to the arc at the point of release
- 4. spiral outward from the arm

Q6. A self-driving car is moving at a constant speed while turning around a wide curve. The onboard sensors detect acceleration.What kind of acceleration is the car experiencing?

- 1. Tangential acceleration
- 2. No acceleration
- 3. Centripetal acceleration
- 4. Linear forward acceleration

Recap Quiz (contd.)

Q7. A humanoid swings its arms while walking. The arms swing like pendulums from the shoulder joint. What happens to tangential velocity of the hand?

- 1. It stays constant throughout the motion
- 2. It increases when angular velocity increases
- 3. It decreases with distance from the shoulder
- 4. It is unrelated to angular velocity

Q8. A mobile robot carries a 5 kg payload. Initially, the payload is mounted at the center and later moved to the back edge of the robot. What happens to its moment of inertia when turning?

- 1. It increases
- 2. It decreases
- 3. It stays the same
- 4. The robot moves faster

Answer Key with Explanations

- Q1: B Centripetal acceleration exists due to direction change, but ω is constant so $\alpha = 0$.
- **Q2: D** Both tangential (a_t) and radial (a_r) acceleration are present. The net acceleration is the vector sum angled between them.
- Q3: C Moment of inertia $I = \sum mr^2$ increases with distance. Fully extended arm increases r, hence higher inertia.
- Q4: B Tangential acceleration exists only when angular velocity changes i.e., at start and stop phases.
- Q5: C Once released, the object moves in the direction of its tangential velocity traight line tangent to the circle at the release point.
- Q6: C Even if speed is constant, turning changes direction, causing inward (centripetal) acceleration.
- Q7: B As the robot's arm swings faster, angular speed increases. Since, $v = r\omega$, the tangential speed of the hand increases too.
- Q8: A Moment of inertia increases when mass is farther from the axis. Shifting the payload from center to edge increases radius r, thus increasing inertia $l = mr^2$.

Part A- Torque

Torque and Rotational Motion: The Rotational Equivalent of Force

What is Torque?

Just as force changes an object's translational motion, **torque** changes an object's *rotational* motion about a pivot or axis.

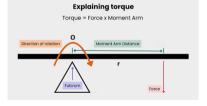
Torque is defined as:

$$\vec{\tau} = \vec{r} \times \vec{F} \quad \Rightarrow \quad \tau = rF\sin\theta$$

- $\vec{\tau}$ is the torque vector (in Nm),
- \vec{r} is the lever arm the position vector from the pivot point (O) to the point where the force is applied.,
- \vec{F} is the applied force,
- θ is the angle between \vec{r} and \vec{F} .

Direction of Torque: Use the *Right-Hand Rule* — curl your fingers from \vec{r} to \vec{F} ; your thumb gives the direction of $\vec{\tau}$.

Torque is a vector and points along the axis of rotation.



Torque and Rotational Motion (contd.)

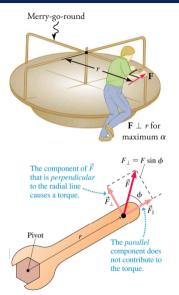
Everyday Example – Merry-Go-Round

- Torque increases when force is applied farther from the pivot.
- Larger lever arm = more torque = faster rotation.

Another Way of Expressing Torque

 $\tau = \textbf{\textit{r}} \cdot \textbf{\textit{F}}_{\perp} = \textbf{\textit{r}} \cdot \textbf{\textit{F}}_{\mathsf{tan}}$

- F_{\perp} or F_{tan} : Component of force perpendicular to the lever arm.
- Tangential force F_{tan} causes rotation.
- Radial force F_{rad} passes through pivot \rightarrow no torque.
- Angle ϕ is between \vec{r} and \vec{F} .



Static Torque

A twisting force applied to an object that does **not cause it to rotate**. It arises when the object is constrained or held in place. Even though no motion occurs, muscles or mechanisms must still exert force to maintain the torque.

Examples:

- Pushing a closed door that doesn't move.
- Holding a wrench still while tightening a bolt.

Dynamic Torque

A twisting force that **results in rotation** and produces angular acceleration. It causes motion and is commonly associated with engines, motors, or rotating mechanical systems.

Examples:

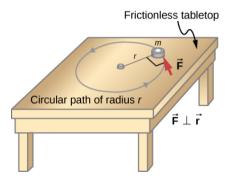
- A car engine turning the wheels.
- A motor shaft spinning.

Rotational Dynamics - Newton's Second Law

What is the rotational counterpart of Newton's Second Law?

- Start with the translational form: $\sum \vec{F} = m\vec{a}$
- Consider a point mass m rotating at radius r, with a tangential force \vec{F}
- From linear dynamics: F = ma
- For circular motion: $a = r\alpha$
- Substituting: $F = mr\alpha$
- Multiply both sides by r: $rF = mr^2 \alpha$
- Recognize:
 - Torque: $\tau = rF$
 - Moment of inertia: $I = mr^2$
- Therefore: $\tau = I\alpha$

For a rigid body: $\sum \tau_i = I \alpha$



Torque Analysis – Balanced Cases

Example 1: Equal Masses, Equal Distances

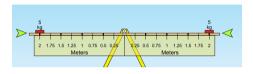
- 5 kg at +2 m (right), 5 kg at -2 m (left)
- Left: $\tau = -2 \cdot (5 \cdot 9.8) = -98 \text{ Nm}$
- Right: $\tau = +2 \cdot (5 \cdot 9.8) = +98 \text{ Nm}$
- Net Torque: 0 \rightarrow Perfectly Balanced

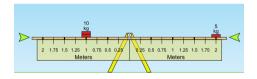
Example 2: Unequal Masses, Adjusted Distance

- 10 kg at $+1 \,\mathrm{m}$, 5 kg at $-2 \,\mathrm{m}$
- Left: $\tau = -2 \cdot (5 \cdot 9.8) = -98 \text{ Nm}$
- Right: $\tau = +1 \cdot (10 \cdot 9.8) = +98 \, \text{Nm}$
- Net Torque: $0 \rightarrow \textbf{Balanced}$

Simulation source:

 $\tt https://phet.colorado.edu/sims/html/balancing-act/latest/balancing-act_en.htmlPhET Balancing Act Simulation$





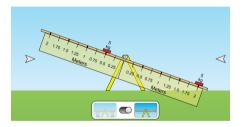
Example 3: Same Masses, Unequal Distances

- Place a 5 kg mass at +2 m (right side)
- Place another 5 kg mass at -0.5 m (left side)

Torque Calculation:

- Left: $\tau = -0.5 \cdot (5 \cdot 9.8) = -24.5 \, \text{Nm}$
- Right: $\tau = +2 \cdot (5 \cdot 9.8) = +98 \text{ Nm}$
- Net Torque: +73.5 Nm

Conclusion: The beam rotates **clockwise** due to stronger torque on the right.



Multi-Object See-Saw Torque Analysis

Left Side (Negative Positions):

- 30 kg at -1.5 m: $\tau = -1.5 \cdot (30 \cdot 9.8) = -441$ Nm
- 20 kg at -1.75 m: $\tau = -1.75 \cdot (20 \cdot 9.8) = -343$ Nm

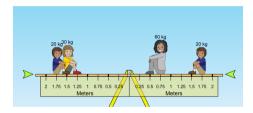
Right Side (Positive Positions):

- 60 kg at +0.75 m: $\tau = +0.75 \cdot (60 \cdot 9.8) = +441 \,\text{Nm}$
- 20 kg at +1.75 m: $\tau = +1.75 \cdot (20 \cdot 9.8) = +343 \,\text{Nm}$

Net Torque:

-441 - 343 + 441 + 343 = 0 Nm

Conclusion: The system is in rotational equilibrium.



Torque Calculation – Revolute Joint in a Robot Arm

Suppose you have a robot with a **revolute joint** and an arm of **0.5 meters**. The robot is lifting a **2 kg load** at a **joint angle of 30°**. What is the torque required for the joint? **Step 1: Compute Load Weight**

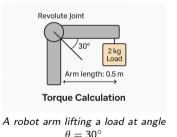
 $F = m \cdot g = 2 \cdot 9.81 = 19.62 \,\mathrm{N}$

Step 2: Use Torque Formula

 $\tau = \mathbf{r} \cdot \mathbf{F} \cdot \sin(\theta)$

$$au = 0.5 \cdot 19.62 \cdot \sin(30^\circ) = 0.5 \cdot 19.62 \cdot 0.5$$

 $au = 4.905 \; \mathrm{Nm}$



The required torque is **4.905** Newton-meters.

Torque in Action – Simulations & Real-World Examples

PhET Simulation: Balancing Act

- Try it yourself: https://phet.colorado.edu/en/simulation/balancing-act
- Observe torque on each side and net torque in real-time.
- Practice balancing by adjusting weight and arm length.
- Excellent for reinforcing concepts like lever arms and rotational equilibrium.

Everyday Examples of Torque

- Watch here: https://www.youtube.com/watch?v=-yXPReR-31E
- Demonstrates torque and types of torque using familiar objects: wrenches, see-saws, bicycles.
- Builds real-world intuition around the torque formula.

Torque in Boston Dynamics' Spot Robot

- Watch here: https://www.youtube.com/watch?v=tfWbE₁eCZk
- Shows how Spot uses joint torques for walking and balancing.
- Highlights precise motor control and torque feedback in real-time robotic motion.

Part B- Equilibrium

Why Equilibrium is Important in Robotics

• Foundation for Stability and Safety:

Robots must maintain balance while handling loads or operating on uneven terrain. *Example: A humanoid robot lifting a box must adjust posture to avoid falling.*

• Enables Accurate Control:

Control algorithms (e.g., PID) rely on initial balance to execute precise movements. *Example: A manipulator arm holding a tool steady before welding.*

- Necessary for Grasping and Holding Objects: Grippers must counteract forces and torques to prevent slipping.
- Crucial for Walking and Dynamic Motion: Walking robots use real-time force/torque balance to stay upright. Example: Spot robot from Boston Dynamics adjusting to terrain.

• Avoiding Failures:

Poor equilibrium causes overloads, instability, and mechanical failure.

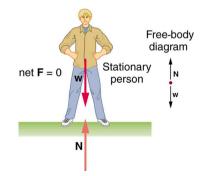
What is Equilibrium?

- A state of balance where opposing forces or influences cancel out.
- Can be at rest or in steady motion no net force or torque.
- Includes both static and dynamic conditions.

Types of Mechanical Equilibrium:

Static Equilibrium

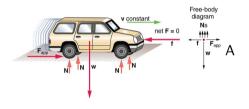
- Object is at rest: $\sum \vec{F} = 0$, $\sum \tau = 0$
- No linear or angular acceleration
- Examples:
 - Book on a table
 - Person standing still
 - Balanced seesaw



Dynamic Equilibrium

- Object is in motion with constant velocity: $\sum \vec{F} = 0$, $\sum \tau = 0$
- No net acceleration or change in angular velocity
- Examples:
 - Car at constant velocity
 - Skydiver at terminal speed
 - Pendulum at constant amplitude

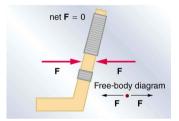
system with zero net force is not necessarily in static equilibrium



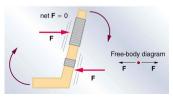
Condition 2: Net Torque Must Be Zero

- Example: Hockey Stick on Ice
 - In **Figure A**, two equal and opposite forces are applied at the same point on the stick.
 - \Rightarrow Net force = 0 & Net torque = 0 \Rightarrow No motion Static equilibrium achieved.
 - In Figure B, same forces applied at different points.
 - \Rightarrow Net force = 0 but Net torque \neq 0 \Rightarrow Stick rotates Not in equilibrium.
- Conclusion:
 - For complete equilibrium, both conditions must be satisfied:
 - $\sum \vec{F} = 0$ (No net force)
 - $\overline{\sum} \tau = 0$ (No net torque)
 - Torque depends on *magnitude*, *direction*, *and point of application*.

Equilibrium: remains stationary



Nonequilibrium: rotation accelerates



Stability of Equilibrium – Stable vs Unstable

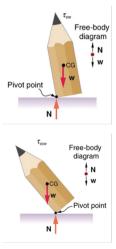
Stability: Describes how the system behaves when slightly disturbed.

Types of Stability

- Stable Equilibrium:
 - Restoring torque brings system back to equilibrium.
 - *Example:* A slight counterclockwise tilt causes a restoring clockwise torque due to the pencil's weight, bringing it back to equilibrium.

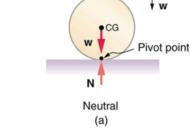
• Unstable Equilibrium:

- A system in unstable equilibrium accelerates away from its equilibrium position.
- *Example:* If the pencil is displaced too far, the torque caused by its weight changes to counterclockwise and causes the displacement to increase.



Neutral Equilibrium

- System stays in new position after displacement.
- No net force or torque to return or move it further.
- Equilibrium is independent of position.
- Example: Ball resting on a flat horizontal surface.



 $\tau = 0$

Source:

https://uta.pressbooks.pub/oert-mpsfundamentals/chapter/chapter-6-basic-dynamics-and-static-equilibrium/ https://www.openassembly.com/document/6d370d32-99fc-4dc0-b06c-210f400afa31?context= Free-body diagram

Ν

What is a Free-Body Diagram (FBD)?

• Definition:

- A Free-Body Diagram (FBD) is a simplified sketch that shows all the external forces and torques acting on a single object.
- It helps isolate the object from its environment, focusing only on what influences its motion or balance.
- Think of it as: "Zooming in on one object to analyze what's pushing or pulling on it."

• Why Use FBDs?

- Clarifies complex mechanical situations by simplifying them.
- Helps apply Newton's Laws ($\sum \vec{F} = 0$, $\sum \tau = 0$, or $\sum \vec{F} = m\vec{a}$).
- Essential for solving equilibrium and dynamics problems.
- Helps identify incorrect assumptions or missing forces.
- Bridges the gap between physical intuition and mathematical formulation.

• Why FBDs Matter in Robotics:

- FBDs help calculate the **torque** required at joints to lift, hold, or move objects.
- They aid in identifying **external forces** such as gravity, payloads, or ground reaction forces.

• Without FBDs:

- Force and torque calculations become guesswork.
- Increased risk of incorrect actuator sizing or overload.

• Applications of FBDs:

- Crucial for analyzing **robot stability** (e.g., humanoid balance or quadrupeds).
- Assists in determining structural **load paths** and stress points.
- Supports energy-efficient design by minimizing unnecessary force exertion.

• Consequences of Skipping FBDs:

- Potential **mechanical failure** or unstable gait/movement.
- Lower accuracy in motion planning and force control.

