
Session 3: Transformations
Part A: Transformations

Part B: Motion - Linear and Angular (Preview)

Dr. Arshiya Sood

June 03, 2025

1 / 40

Table of Contents

1. Session 2 Recap
1.1 Recap Quiz

2. Transformations
2.1 Motivation: Why Transformations?
2.2 What is Pose in Robotics?
2.3 Translation in 2D and 3D
2.4 What is Rotation
2.5 2D Rotation: Derivation
2.6 3D Rotation: Derivation
2.7 Rotation Matrices for Each Axis
2.8 Homogeneous Coordinates and Transformation Matrix
2.9 Chaining Transformations Using Homogeneous Matrices

3. Part B: Motion : Linear and Angular (Preview)

2 / 40

Session 2 Recap & Reflect: What Did We
Learn?

3 / 40

Session 2 Recap & Reflect

Why Study Vectors, Frames, & Transformations?

In Robotics:

• Robots operate in 3D environments — position and orientation matter

• Vectors represent direction and magnitude

• Coordinate frames provide reference contexts (world, base, tool)

• Convert vectors/points between coordinate frames

Transformations Represent:

• Rotation – changes orientation

• Translation – shifts origin

• Scaling – alters object size

4 / 40

Session 2: Recap & Reflect (contd.)

Physical Quantities:
Physical quantities are properties or
characteristics of a system that can be
measured or quantified.

Scalars:

• Have only magnitude

• Examples: Mass, Energy,
Temperature

Vectors:

• Have both magnitude and
direction

• Examples: Velocity, Force,
Acceleration

1D Vector Algebra:

• Vectors behave like signed numbers

• Operations: Addition, Subtraction, Scalar
Multiplication

2D Vector Algebra – Parallelogram Law:

• Two adjacent vectors form a parallelogram

• Resultant vector is the diagonal

• Magnitude:

|R⃗| =
√

A2 + B2 + 2AB cos θ

• Direction:

tanϕ =
B sin θ

A+ B cos θ
5 / 40

Session 2: Recap & Reflect (contd.)

Vector Representation in 2D and 3D

In 2D:

A⃗ = Ax î + Ay ĵ |A⃗| =
√
A2
x + A2

y θ = tan−1

(
Ay

Ax

)
In 3D:

A⃗ = Ax î + Ay ĵ + Az k̂ |A⃗| =
√

A2
x + A2

y + A2
z

Direction Cosines:

cosα =
Ax

|A⃗|
, cosβ =

Ay

|A⃗|
, cos γ =

Az

|A⃗|

6 / 40

Session 2: Recap & Reflect (contd.)

Vector Operations: Dot and Cross Product

Dot Product (Scalar Product):

A⃗ · B⃗ = AB cosϕ = AxBx + AyBy + AzBz

• Result is a scalar

• ϕ = 0◦: parallel → A⃗ · B⃗ = AB

• ϕ = 90◦: perpendicular → A⃗ · B⃗ = 0

• ϕ = 180◦: antiparallel → A⃗ · B⃗ = −AB

Cross Product (Vector Product):

A⃗× B⃗ = |A⃗||B⃗| sinϕ n̂

=

∣∣∣∣∣∣
î ĵ k̂
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
• Result is a vector perpendicular to
both

• Follows the right-hand rule

7 / 40

Session 2: Recap & Reflect (contd.)

Coordinate Frames in Robotics & System Conventions

What is a Frame?

• A coordinate system = origin +
orientation

• Describes pose (position +
orientation)

• All measurements and vectors
are expressed relative to a
frame

Six Parameters to define pose:

• Translation: x , y , z

• Rotation: roll (x), pitch (y),
yaw (z)

Coordinate System Conventions

• Right-handed system: Common in
robotics

• Left-handed system: Less common

Right-hand rule for axes:

• Index finger → +x

• Middle finger → +y

• Thumb → +z

Right-hand rule for rotation:

• Thumb along axis

• Curl of fingers → direction of positive
rotation

8 / 40

Session 2: Recap & Reflect (contd.)

Types of Coordinate Frames in Robotics

1. World Frame
• A global reference frame.
• Used to describe the robot’s environment.
• Shared among multiple robots or systems.

2. Base Frame
• Fixed to the robot’s base or body.
• Serves as the origin for all robot joint calculations.

3. Tool Frame
• Attached to the robot’s end-effector or tool.
• Critical for precise control during tasks like welding, painting, or picking.

4. User-Defined Frame
• Custom frame created for specific tasks.
• Useful for inclined surfaces, fixtures, or part-specific orientation.

9 / 40

Recap Quiz: Vectors and Frames (1/4)

Q1. A robot moves 3m east, then 4m north. What is the magnitude of the
resultant displacement vector?

A. 5m

B. 7m

C. 1m

D. 25m

Q2: If the angle between two vectors is 90◦, which of the following is always true?

A. Dot product is maximum

B. Dot product is negative

C. Dot product is zero

D. Cross product is zero

10 / 40

Recap Quiz: Vectors and Frames (2/4)

Q3. Which of the following best explains why robots need multiple coordinate
frames?

A. To calculate kinetic energy of moving parts

B. To handle complex wiring in embedded systems

C. To express positions and orientations relative to different parts of the robot

D. To switch between analog and digital control modes

Q4. If vector A⃗ points along +x and B⃗ along +y , the direction of A⃗× B⃗ is:

A. −z

B. +z

C. +y

D. 0

11 / 40

Recap Quiz: Vectors and Frames (3/4)

Q5. A robotic arm’s end-effector is defined in 3D space using which of the
following?

A. Length, Mass, and Force

B. Velocity, Acceleration, and Jerk

C. Translation and Rotation

D. Input voltage and Output torque

Q6. A robot’s gripper is moving to pick up a small box. The command specifies
position relative to the end-effector. Which frame is being used?

A. World Frame

B. Base Frame

C. Tool Frame

D. User Frame

12 / 40

Recap Quiz: Vectors and Frames (4/4)

Q7. Which of the following is true for any vector in 3D space?

A. Must lie along a coordinate axis

B. Can be described using direction cosines

C. Cannot lie in a plane

D. Always has non-zero dot product with all vectors

Q8. If a vector in 3D has cosα = 0.6, cosβ = 0.8, cos γ = 0, then:

A. It lies entirely on the z-axis

B. It has no component in the x-y plane

C. It lies in the x-y plane

D. Its magnitude must be zero

13 / 40

Recap Quiz: Answer Key

• Q1: A (Pythagoras:
√
32 + 42 = 5)

• Q2: C (Dot product is zero when θ = 90◦)

• Q3: C (Different parts need relative positioning)

• Q4: B (Right-hand rule: x × y = z)

• Q5: C (Pose = Translation + Rotation)

• Q6: C (Tool frame is attached to end-effector)

• Q7: B (All vectors can be described using direction cosines)

• Q8: C (Zero z-component → lies in x-y plane)

14 / 40

Part A: Transformations

15 / 40

Motivation: Why Transformations?

Robots operate in a world of motion and orientation. To describe and control this
motion, we need transformations.
• Multiple Coordinate Frames:

• Every joint, link, and tool has its own local frame.
• The world has a global frame.
• We must convert between frames to control the robot.

• Transformations = Translation + Rotation
• Translation: Shifts position in space.
• Rotation: Changes orientation.
• Together, they define an object’s pose.

• Examples:
• Robot arm computing end-effector pose.
• Drone flying through 3D space.

• Why This Matters:
• Enables motion planning, sensor fusion, simulation.
• Helps robots understand where they are and what to do.

16 / 40

What is Pose in Robotics?

Pose = Position + Orientation

Position:
• The location of the robot or its end-effector in 3D space

• Represented by a vector: p =

xy
z


Orientation:
• The rotation of the robot or its end-effector relative to a reference frame
• Can be represented using:

• Rotation matrix (3× 3)
• Euler angles (Yaw, Pitch, Roll)
• Quaternion or Axis-Angle

Pose is a combination of both — and will eventually be represented using a
transformation matrix.

17 / 40

Translation in 2D and 3D

Translation refers to moving a point or frame from one position to another without
changing its orientation. It is the simplest form of transformation and a foundation for
motion planning and coordinate frame conversions.

1. Basic Translation:

• In 2D:
P = (x , y), d⃗ = (dx , dy), P ′ = (x + dx , y + dy)

• In 3D:

p⃗′ =

xy
z

+

dxdy
dz

 =

x + dx
y + dy
z + dz


• Represents the position of a point or robot’s end-effector in 3D space

• Describes ”where” the robot or object is located

• Units are typically in meters (m)

18 / 40

Translation in 2D and 3D

2. Translation Between Frames: Let the child frame be located at position
(1.5, 1.0, 0.5) w.r.t the parent frame.

• A point is defined in the child frame:

p⃗c = (0, 0, 0.5)c

• Add the translation offset:

p⃗p = p⃗c+ d⃗ = (0+1.5, 0+1.0, 0.5+0.5) =

(1.5, 1.0, 1.0)p
• To convert in the opposite direction (parent
to child), subtract the offset:

p⃗p = (0, 0, 0.5)p ⇒ p⃗c = p⃗p−d⃗ = (−1.5, −1.0, 0)c

When frames are related by pure translation, transforming a point only requires simple
vector addition or subtraction.

19 / 40

What is Rotation?

Rotation describes the change in orientation of a point or object around a fixed axis or
origin.

Rotation matrix: is a transformation matrix that operates on a vector and produces a
rotated vector such that the coordinate axes always remain fixed. These matrices rotate a
vector in the counterclockwise direction by an angle

Rotation in 2D:

R(θ) ∈ R2×2, R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
Rotation in 3D:

R ∈ R3×3

Properties of Rotation Matrices:
• Orthogonal: R⊤R = RR⊤ = I
• Inverse is transpose: R−1 = R⊤

• Determinant is always 1: det(R) = 1
20 / 40

2D Rotation: Derivation

Goal: Derive a matrix that rotates a point

p⃗1 =

[
x1
y1

]
by angle θ to get p⃗2 =

[
x2
y2

]

Step 1: Represent in polar coordinates[
x1
y1

]
=

[
h cosφ
h sinφ

]
Step 2: After rotation by θ:[

x2
y2

]
=

[
h cos(φ+ θ)
h sin(φ+ θ)

] Rotating a point by angle θ about
the origin

Source: https://articulatedrobotics.
xyz/tutorials/coordinate-transforms/

rotation-matrices-2d

21 / 40

https://articulatedrobotics.xyz/tutorials/coordinate-transforms/rotation-matrices-2d
https://articulatedrobotics.xyz/tutorials/coordinate-transforms/rotation-matrices-2d
https://articulatedrobotics.xyz/tutorials/coordinate-transforms/rotation-matrices-2d

2D Rotation Matrix: Derivation Continued

Step 3: Use trig identities and simplify

cos(φ+ θ) = cosφ cos θ − sinφ sin θ

sin(φ+ θ) = sinφ cos θ + cosφ sin θ

[
x2
y2

]
=

[
h cosφ cos θ − h sinφ sin θ
h sinφ cos θ + h cosφ sin θ

]
=

[
x1 cos θ − y1 sin θ
x1 sin θ + y1 cos θ

]
Step 4: Final matrix form [

x2
y2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x1
y1

]

22 / 40

3D Rotation: Derivation – Matrix along Z-axis

Step 1: Represent the point

p⃗ =

xy
z


We want to rotate it around the Z-axis by
angle θ.

Step 2: Rotate in the XY-plane

[
xnew
ynew

]
=

[
cos θ − sin θ 0
sin θ cos θ 0

]xy
z


Rotation in the XY-plane (Z-axis)

Source: https://articulatedrobotics.xyz/tutorials/
coordinate-transforms/rotations-3d

23 / 40

https://articulatedrobotics.xyz/tutorials/coordinate-transforms/rotations-3d
https://articulatedrobotics.xyz/tutorials/coordinate-transforms/rotations-3d

3D Rotation: Derivation – Matrix along Z-axis

Step 3: Z coordinate remains unchanged

znew =
[
0 0 1

] xy
z

 = z

Step 4: Final matrix form (3D Rotation about Z-axis)xnewynew
znew

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xy
z


This matrix rotates a point around the Z-axis by angle θ.

24 / 40

Rotation Matrices for Each Axis

3D Rotation can be performed about X, Y, or Z axes.

Rotation about X-axis (Roll):

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Rotation about Y-axis (Pitch):

Ry (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rotation about Z-axis (Yaw):

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


25 / 40

Roll, Pitch, and Yaw: Head Movement Analogy

Roll (X-axis) – “Tilt” Motion (Tilt head toward
shoulder)

• Axis goes through the nose to the back
(X-axis)

• Affects Y and Z, X remains fixed

Pitch (Y-axis) – “Yes” Motion (Nod head up and
down)

• Axis goes through the ears (Y-axis)

• Affects X and Z, Y remains fixed

Yaw (Z-axis) – “No” Motion (Shaking head left
and right)

• Axis goes up through the head (Z-axis)

• Affects X and Y, Z remains fixed

Source: https://www.researchgate.net/publication/
279291928_Enhanced_real-time_head_pose_estimation_

system_for_mobile_device/figures?lo=1

26 / 40

https://www.researchgate.net/publication/279291928_Enhanced_real-time_head_pose_estimation_system_for_mobile_device/figures?lo=1
https://www.researchgate.net/publication/279291928_Enhanced_real-time_head_pose_estimation_system_for_mobile_device/figures?lo=1
https://www.researchgate.net/publication/279291928_Enhanced_real-time_head_pose_estimation_system_for_mobile_device/figures?lo=1

Why Homogeneous Transformation Matrices?

Motivation: Unifying Rotation and Translation

• In robotics, we frequently need to express both:
• Rotation: using a 3× 3 matrix
• Translation: using a 3× 1 vector

• Applying rotation and translation separately can be inefficient and error-prone.

• To streamline computations, we use a single 4× 4 matrix called the homogeneous
transformation matrix.

• This matrix allows us to perform both operations using matrix multiplication in
homogeneous coordinates.

Key Benefit: Enables chaining multiple transformations (e.g., Base → Joint → Tool)
seamlessly.

27 / 40

Homogeneous Coordinates and Transformation Matrix

1. Homogeneous Coordinates

A point in 3D: p =

xy
z

, in homogeneous form: ph =


x
y
z
1


2. Homogeneous Transformation Matrix

T =

[
R d
0⊤ 1

]
=


r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1


where:

• R ∈ R3×3: Rotation matrix

• d ∈ R3×1: Translation vector
28 / 40

Transforming Points Using Homogeneous Matrix

3. Transformation of a 3D point:

ph =


x
y
z
1


Then, the transformed point is:

ph = T · p
Result:

ph =

[
R d
0T 1

]
·


x
y
z
1

 =

[
R · pxyz + d

1

]

4. Interpretation:
• The original point is rotated and then translated.
• The last row ensures correct affine transformation using matrix multiplication.

29 / 40

Chaining Transformations Using Homogeneous Matrices

Suppose we have three reference frames: A, B, and C.

Let:
• TAB : transformation from frame A to frame B
• TBC : transformation from frame B to frame C

Given a vector x⃗A in frame A, we can express it in frame C by chaining the
transformations:

x⃗C = TBC · TAB · x⃗A
This means:
• First, transform the vector from frame A to frame B using TAB

• Then, transform it from frame B to frame C using TBC

This scales to longer chains as well:

x⃗E = TDE · TCD · TBC · TAB · x⃗A
You can transform a point across any number of frames by multiplying all transformation
matrices in the correct order (right to left).

30 / 40

Chaining Transformations – Car Example

Setting: We have three cars in a parking
area — A, B, and C.

Car A can see Car B, but not Car C (blocked
by a wall).
Car B can see Car C.

We attach local frames to each car.
Let’s say the observer is in Car A.
Car A sees Car B at position [x1, y1] and ori-
entation θ1.
Transformation from frame A to B:

TAB

31 / 40

Chaining Transformations – Car Example

From Car B’s perspective, Car C
is at [x2, y2] and rotated by angle
θ2.

Transformation from frame B to C:

TBC

Now, the task for Car A is to find
the pose of Car C.

Since A knows TAB and B knows
TBC , A can compute:

TAC = TAB · TBC
32 / 40

Chaining Transformations – Car Example

With this chained transformation, Car A can now determine the position and orientation
of Car C without seeing it directly.

33 / 40

Chaining Transformations – Car Example

From the final transformation TAC ,
Car A can extract:

• The global coordinates [x3, y3]
of Car C.

• The orientation θ3.

Source: https://www.rosroboticslearning.com/rigid-body-transformations

34 / 40

https://www.rosroboticslearning.com/rigid-body-transformations

Rotation Concepts – Demo Videos

To deepen our understanding of rotations and orientation, we’ll now watch a few
short video clips:

• GeoGebra Rotation Animation
youtu.be/PIDNpWG2s1Y

Simple visual explanation of 2D/3D rotations using GeoGebra animations.

• Robots: Axis and Orientation of Movement – Pitch, Roll, Yaw
youtu.be/EjvdpkX9fD8

Demonstrates robot arm orientation through roll, pitch, and yaw motion examples.

• Understanding the Rotation Matrix in 3D
youtu.be/8GrdqAizcfU

Explains how the 3D rotation matrix works with axis-angle visuals.

35 / 40

https://www.youtube.com/watch?v=PIDNpWG2s1Y
https://www.youtube.com/watch?v=EjvdpkX9fD8
https://www.youtube.com/watch?v=8GrdqAizcfU

B: Motion : Linear and Angular (Preview)

36 / 40

Motion in Robotics: Linear and Angular

Motion in robotics can be broadly classified into:

• Linear Motion:
• Movement along a straight or curved path.
• Examples: Robot arm extending, mobile robot moving forward.

• Angular Motion:
• Rotation about a fixed axis or point.
• Examples: Joint rotation in a robotic arm, drone propeller spinning.

We will explore the physics and vector mathematics behind both forms of motion.

37 / 40

Linear Motion: Velocity and Acceleration

Linear Velocity (v⃗):

• Describes the rate of change of position with time.

• Vector quantity: has both magnitude and direction.

• Mathematically: v⃗ = dx⃗
dt

Linear Acceleration (a⃗):

• Describes the rate of change of velocity with time.

• Indicates speeding up, slowing down, or changing direction.

• Mathematically: a⃗ = dv⃗
dt

Both quantities are fundamental in understanding how robots move linearly in space.

38 / 40

Angular Motion: Velocity and Acceleration

Angular Velocity (ω⃗):

• Describes the rate of change of angular position.

• It is a vector along the axis of rotation.

• Mathematically: ω⃗ = d θ⃗
dt

• Units: radians/second

Angular Acceleration (α⃗):

• Describes the rate of change of angular velocity.

• Indicates if a rotating body is speeding up or slowing down.

• Mathematically: α⃗ = dω⃗
dt

• Units: radians/second2

39 / 40

Relationship Between Linear and Angular Motion

Tangential Velocity (v⃗):

• An object at distance r from the axis of rotation has linear velocity:

v⃗ = ω⃗ × r⃗

• v⃗ is perpendicular to both ω⃗ and r⃗ .

Tangential Acceleration (a⃗t):

• Caused by angular acceleration:
a⃗t = α⃗× r⃗

Centripetal Acceleration (a⃗c):

• Always directed towards the center:

a⃗c = −ω2r⃗

40 / 40

	Session 2 Recap
	Recap Quiz

	Transformations
	Motivation: Why Transformations?
	What is Pose in Robotics?
	Translation in 2D and 3D
	What is Rotation
	2D Rotation: Derivation
	3D Rotation: Derivation
	Rotation Matrices for Each Axis
	Homogeneous Coordinates and Transformation Matrix
	Chaining Transformations Using Homogeneous Matrices

	Part B: Motion : Linear and Angular (Preview)

